

The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous)

Mithaghar Road, Mulund East, Mumbai-400081, India

College with Potential for Excellence Phones :022-21631421, 221631423, 221631004 Fax : 022-221634262, email: vazecollege@gmail.com

Syllabus for B.Sc. Third Year Programme Physics

Syllabus as per Choice Based Credit System (NEP-2020)

(June 2025 Onwards)

Submitted by

Department of Physics Vinayak Ganesh Vaze College of Arts, Science and Commerce (Autonomous) Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. Tel: 022-21631004, Fax: 022-21634262 E-mail: vazecollege@gmail.com Website:www.vazecollege.net

The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous)

Syllabus as per Choice Based Credit System (NEP 2020) Syllabus for Approval

Subject: Physics

Sr. No.	Heading	Particulars
1	Title of Programme	Third Year B.Sc. Physics: Semester V and VI
2	Eligibility for Admission	The Second Year B.Sc. examination of this university with physics as a Major subject or any other university recognized as equivalent thereto.
3	Passing marks	Minimum D Grade or equivalent minimum marks for passing at the Graduation level.
4	Ordinances/Regulations (if any)	
5	No. of Years/Semesters	One year/Two semester
6	Level	U.G. Part-III : Level- 5.5
7	Pattern	Semester
8	Status	Revised
9	To be implemented from Academic year	2025-2026

Date:

Signature:

BOS Chairperson:

Third Year B. Sc. Program in Physics (Level 5.5)

Semester	Core Course & Credits		NSQF Course & Cre	edits
	MAJOR	No. of Lectures	VSC/SEC	No. of Lectures
	Mandatory Credits 10 (5 x 2)		VSC Credits 2	
	Course 1 Cr. 2: Mathematical Methods & Statistical Physics	2L	Course 1 Cr. 2: Practical Introduction to Python Programming	4L
	Course 2 Cr. 2: Solid State Physics	2L		
	Course 3 Cr. 2: Atomic & Molecular Physics	2L		
	Course 4 Cr. 2: Electrodynamics	2L		
	Course 5 Cr. 2: Practical (Practical Based on all Papers)	4L		
Sem - V	Electives (selected anyone) Credits 4 (2+2)		OJT/FP/CEP/CC/RP	
	Course 1 Cr. 2: 8085 Microprocessor	2L	FP Credits 2	
	Course 2 Cr. 2: Practical 8085 Microprocessor	4L	Course 1 Cr. 2: Practical	4L
	Course 1 Cr. 2: Solar Energy	2L		
	Course 2 Cr. 2: Practical Solar Energy	4L		
	MINOR Credits 4 (2+2)			
	Course 1 Cr. 2: Semiconductor Physics – 1	2L		
	Course 2 Cr. 2: Practical Semiconductor Physics – 1	4L		
	MAJOR			
	Mandatory*Credits 10 (5 x 2)		VSC Credits 2	
	Course 1 Cr. 2: Classical Mechanics	2L	Course 1 Cr. 2: Practical Data Analysis and Visualization Using Python Practical	4L
	Course 2 Cr. 2: Electronics	2L		
	Course 3 Cr. 2: Nuclear Physics	2L		
	Course 4 Cr. 2: Special theory of Relativity	2L		
Sem - VI	Course 5 Cr. 2: Practical (Practical Based on all Papers)	4L		
	Electives (selected anyone) Credits 4 (2+2)		OJT/FP/CEP/CC/RP	
	Course 1 Cr. 2: 8051 Microcontroller	2L	OJT Credits 4	
	Course 2 Cr. 2: Practical 8051 Microcontroller	4L	Course 1 Cr. 2: Practical	8L
	Course 1 Cr. 2: Arduino Programming	2L		

	Course 2 Cr. 2: Practical Arduino Programming	4L		
	MINOR Credits 2			
	Course 1 Cr. 2: Semiconductor Physics - 2	2L		
Total Cumu	alative credits = 20 + 08 + 06 + 04 + 06	= 44 Credit	ts	
Exit option:	Award of UG Degree in Major and Minor w	vith 132 cred	lits OR continue with Major & Mi	nor

B. Sc. Program in Physics: Cumulative Credit Structure

								F.Y.B.Sc.								
T and	6	Mandatory					Minor	Any Faculty	VSC/SEC	Ability Enhancement Course / Indian Knowledge System/Value Education		owledge	OJT/FP/CEP/CC/RP	Credit	Cumulative Credit	
Level	el Sem		Major]	Elective	η Γ		OE		Course				ortun		
		C-1	C-1	Practical	C-1	Practical	C-1		AEC	VEC	IKS					
4.5	Ι	2 [2L]	2 [2P]	-	-	2 [2L]	2 [2P]	4 [3L+1P]	VSC = 4 [2L + 2P]	2	2	2	-	22	44	
	Π	2 [2L]	2 [2P]	-	-	2 [2L]	2 [2P]	4 [3L+ 1P]	SEC = 4 $[2L + 2P]$	2	2	-	CC = 2	22		

										S.Y.B.Sc	-	-			-		
Level	Level Sem		Mandatory]	Minor	Any Faculty		Ability Enhancement Course / Indian Knowledge System/Value Education			OJT/FP/CEP/CC/RP	Credit	Cumulative Credit
Level	Sem	Major			1	Elective			OE	2,500	Course				ortuit		
		C-1	C-2	C-3	Practical	C-1	Practical	C-1	Practical	C-1		AEC	AEC VEC IKS				
5.0	III	2 [2L]	2 [2L]	2 [2L]	2 [2P]	-	-	2 [2L]	2 [2P]	2 [2L]	VSC = 2 [2P]	2	-	-	FP = 2, CC = 2	22	44
5.0	IV	2 [2L]	2 [2L]	2 [2L]	2 [2P]	-	-	2 [2L]	-	2 [2L]	SEC = 2 [2P]	2	-	-	CEP = 4, CC = 2	22	44

											T.Y.B.Sc.							
		Mandatory							Any Faculty			Ability Enhancement Course / Indian Knowledge				Cumulative		
Level	Sem			Maj	jor		F	Elective]	Minor	OE	VSC/SEC	System/Value Education Course			OJT/FP/CEP/CC/RP	Credit	Credit
		C-1	C-2	C-3	C-4	Practical	C-1	Practical	C-1	Practical	C-1		AEC	VEC	IKS			
	v	2 [2L]	2 [2L]	2 [2L]	2 [2L]	2 [2P]	2 [2L]	2 [2P]	2 [2T]	2 [2P]	-	VSC = 2 [2P]	-	-	-	FP = 2	22	
5.5	VI	2 [2L]	2 [2L]	2 [2L]	2 [2L]	2 [2P]	2 [2L]	2 [2P]	2 [2T]	-	-	VSC = 2 [2P]	-	-	-	OJT = 4	22	44

**L = Lecture, P = Practical

T.Y.B. Sc. Program in Physics: Cumulative Credit Structure

Level	Sem.	MAJOR (N	Aandatory)	MINOR (Elective – Anyone)	VSC (Vocational & Skill Enhancement)	OJT / FP (Field Project / On-the-Job Training)	Cumulative Credits	Degree Awarded
		Mandatory	Electives	C and the A	Carallia A	Caralita 2		
		Credits 10 [8T + 2P]	Credits 4 [2T + 2P]	Credits 4 [2T + 2P]	Credits 4 [2P]	Credits 2 [2P]		
		Course 1 (Cr.2):	Course 1 (Cr.2):	Course 1 (Cr.2):	Course 2	Field Project		
		Mathematical Methods &	8085 Microprocessor	Semiconductor	(Cr.2):	(FP) – 2		
		Statistical Mechanics		Physics – 1	Practical on	Credits		
			Course 2 (Cr.2):		Introduction to			
		Course 2 (Cr.2):	Practical on 8085		Python			
		Solid State Physics	Microprocessor	Course 2 (Cr.2):	Programming			
			OR	Practical on			22	
	Sem V	Course 3 (Cr.2):		Semiconductor				
	Sem v	Atomic & Molecular Physics	Course 1 (Cr.2):	Physics - 1				
			Solar Energy					
		Course 4 (Cr.2):						
		Electrodynamics	Course 2 (Cr.2):					
		2	Practical on Solar Energy					
		Course 5 (Cr.2):						NOR
		Practical (Based on all above						UG Degree
		papers)						after 3 yr
5.5		Credits 10	Credits 4	Credits 4	Credits 4	Credits 4		
		[8T + 2P]	[2T + 2P]	[2T]	[2P]	[4P]		
		Course 1 (Cr.2):	Course 1 (Cr.2):	Course 1 (Cr.2):	Course 2	On-Job		
		Classical Mechanics	8051 Microcontroller	Semiconductor	(Cr.2):	Training (OJT)		
				Physics – 2	Practical on	– 4 Credits		
		Course 2 (Cr.2):	Course 2 (Cr.2):		Data Analysis			
		Electronics	Practical on 8051		and			
	Sem VI		Microcontroller		Visualization		22	
	Sem vi	Course 3 (Cr.2):	OR		using Python		22	
		Nuclear Physics						
			Course 1 (Cr.2):					
		Course 4 (Cr.2):	Arduino Programming					
		Special Theory of Relativity	Course 2 (Cr.2):					
		Course 5 (Cr.2):	Practical on Arduino					
		Practical (Based on all above	Programming					
		papers)						
Total	Credit	20	8	6	4	6	44	

Programme Educational Objectives

PEO1	Graduates will have a strong foundation in Physics, allowing them to pursue higher
	education or careers in academia, industry, and research.
PEO2	Graduates will demonstrate proficiency in problem-solving, analytical thinking, and application of Physics concepts in real-world settings.
PEO3	Graduates will be ethical, socially responsible, and contribute to societal well-being
	through their professional endeavors.
PEO4	Graduates will demonstrate leadership, communication, and teamwork skills, working effectively in multidisciplinary environments.
PEO5	Graduates will engage in lifelong learning to keep up with advancements in Physics and related fields.
PEO6	Graduates will apply their knowledge of Physics in industries, research institutions, and government agencies, contributing to technological innovation.

Programme Outcomes

Upon successful completion of the B.Sc. (Physics) course from Vaze College affiliated to Mumbai University, graduates can expect the following outcomes:

P01	Scientific Knowledge - Graduates will demonstrate a strong understanding of core principles of Physics and related disciplines, and will apply theoretical knowledge to solve complex problems in scientific contexts.
P02	Problem Analysis - Graduates will be able to identify and analyse complex scientific problems, collect relevant data, and apply appropriate methods to find meaningful solutions.
P03	Experimental and Practical Application Skills - Graduates will be able to apply theoretical knowledge to design and conduct practical experiments, analyse data, and derive conclusions. They will also connect experimental outcomes with theoretical concepts, even in papers that include practical components.
P04	Modern Tool Usage - Graduates will be proficient in using modern computational and experimental tools and software to model, analyse, and solve problems in Physics.
P05	Communication - Graduates will be able to communicate scientific concepts and experimental results effectively, both orally and in writing, to diverse audiences.
P06	Lifelong Learning and Societal Contribution - Graduates will recognize the importance of lifelong learning and contribute to societal and environmental challenges through responsible application of scientific knowledge.

Programme Specific Outcomes

PS01	Use advanced mathematical and statistical tools to model and interpret complex physical systems.
PSO2	Demonstrate comprehensive knowledge in quantum mechanics, atomic and molecular physics, nuclear physics, and relativity.
PSO3	Analyze properties of materials and electronic systems through theoretical and practical approaches.
PSO4	Integrate theoretical knowledge with practical skills through experiments involving advanced instrumentation and electronics.
PS05	Apply programming (Python, Arduino), data analysis, and microcontroller skills to real- world scientific problems.
PS06	Demonstrate readiness for higher studies or professional roles through research-based projects and independent problem-solving.

The Detailed Semester and Course Wise Syllabus as follows:

	SEMESTER V				
Code	Course of Study – Major	Cr.	L	Т	
VSPH300	Course 1: Mathematical Methods & Statistical Physics	2	2	-	
VSPH301	Course 2: Solid State Physics	2	2	-	
VSPH302	Course 3: Atomic & Molecular Physics	2	2	-	
VSPH303	Course 4: Electrodynamics	2	2	-	
VSPH304	Course 5: Practical (Practical Based on all Papers)	2	-	-	
	Electives				
VSPH305	Course 1: 8085 Microcontroller	2	2	-	
VSPH306	Course 2: Practical based on 8085 Microcontroller	2	-	-	
VSPH307	Course 3: Solar Energy	2	2	-	
VSPH308	Course 4: Practical based on Solar Energy	2	-	-	
	VSC				
VSPH309	Course 1: Introduction to Python Programming	2	-	-	
	MINOR				
VSPH310	Course 1: Semiconductor Devices - 1	2	2	-	
VSPH311	Course 2: Practical based on Semiconductor Devices - 1	2	-	-	
	FP				
VSPH312	Course 1: Physics Field Project	2	-	-	
	Total	22	18	0	2

The total minimum credits required for completing the B.Sc. in Physics is **132**

******* Note:** Students are allowed to select one elective out of two electives given in curriculum

	SEMESTER VI				
Code	Course of Study - Major	Cr.	L	Τ	Р
VSPH350	Course 1: Classical Mechanics	2	2	-	-
VSPH351	Course 2: Electronics	2	2	-	-
VSPH352	Course 3: Nuclear Physics	2	2	-	-
VSPH353	Course 4: Special Theory of Relativity	2	2	-	-
VSPH354	Course 5: Practical (Practical Based on all Papers)	2	-	-	4
	Electives				
VSPH355	Course 1: 8051 Microcontroller	2	2	-	-
VSPH356	Course 2: Practical based on 8051 Microcontroller	2	-	-	4
VSPH357	Course 3: Arduino Programming	2	2	-	-
VSPH358	Course 4: Practical Based on Arduino Programming	2	-	-	4
	VSC				
VSPH359	Course 1: Data Analysis and Visualization Using Python	2	-	-	4
	MINOR				
VSPH360	Course 1: Semiconductor Devices - 2	2	2	-	-
	OJT				
VSPH361	Course 1: Physics OJT	4	-	-	8
	Total	22	18	0	22

******* Note:** Students are allowed to select one elective out of two electives given in curriculum

L = Lecture hours per week

T = Tutorial hours per week

P = Practical hours per week

Semester – V

Paper I Course Code: VSPH300 Credits: 2

Mathematical Methods & Statistical Physics

Course Learning Objective

LO 1	Develop a mathematical foundation in probability theory, complex numbers, series		
	expansions, and Fourier analysis for applications in statistical physics.		
LO 2	Understand the principles of statistical thermodynamics, including ensemble theory,		
	the Boltzmann distribution, and classical limits		
LO 3	Apply statistical mechanics concepts to quantum systems, including Bose-Einstein		
	and Fermi-Dirac statistics		
LO 4	Analyse qualitative applications of statistical mechanics in condensed matter,		
	astrophysics, and stochastic processes		

Course Code		Paper I	Credits	Lectures	
VSPH300		Mathematical Methods & Statistical Physics	2	30	
Course Ou	Course Outcomes : Upon Completion of the course the student will be able to				
CO 1	CO 1 Use mathematical tools such as probability distributions, Taylor and Lau and Fourier analysis to solve problems			ent series,	
CO 2		ensemble theory and partition functions to derive therr nalyse equilibrium properties of systems.	nodynamic	quantities	
CO 3		are and contrast classical and quantum statistics, includ eal gases and blackbody radiation.	ing their im	plications	
CO 4	CO 4 Explain key applications of Statistical mechanics, statistical distributions				
Unit	Content			No. of Lectures	
	Math	ematical Methods:			
	Chapter 1: Probability Theory				
	1.1 Basic concepts				
	1.2 Theorems of Probability				
	1.3 Probability distributions				
	Chap	ter 2: Complex Numbers and Their Algebra			
Unit 1	2.1 Introduction			10	
	2.2 Different representations of Complex Numbers2.3 Euler's formula, Complex functions				
	2.4 De	e Moivre's theorem			
	Chapter 3: Laurent and Taylor Series				
	3.1 Se	eries representation of functions and their applications			

	Chapter 4: Fourier Series	
	4.1 Definition of periodic functions	
	4.2 Odd and Even functions, Applications	
	Chapter 5: Fourier transform	
	5.1 Fourier, Fourier Cosine & Sine Transforms of elementary functions	
	Chapter 7: Statistical Mechanics	
	7.1 Microstates and Macrostates	
	7.2 Postulates of Statistical Mechanics: Fundamental assumptions and their implications	
	7.3 Ensemble Theory: Microcanonical, canonical, and grand canonical ensembles.	
	7.4 Partition function	
	7.4 Boltzmann Distribution	
Unit 2	7.5 Maxwell - Boltzmann Statistics: Probability of energy states, classical ideal gas.	10
	7.6 Equipartition Theorem	
	Chapter 8: Statistical Thermodynamics	
	8.1 Thermodynamic Potentials	
	8.2 Entropy	
	Chapter 9: Stochastic processes in statistical mechanics	
	9.1 Qualitative discussion on random walks and their application in Brownian motion	
	Chapter 8: Quantum Statistics and applications	
	8.1 Bosons and Fermions	
	8.2 Bose-Einstein Statistics	
	8.2.1 Application 1: Photon gas and Blackbody radiation	
	8.2.1.1 Planck's distribution as a Bose-Einstein result	
	8.2.1.2 Stefan–Boltzmann law (outline)	
	8.2.2 Application 2: Bose-Einstein Condensation	
U. 4.0	8.2.2.1 Concept of macroscopic occupation of ground state	10
Unit 3	8.2.2.2 Ultra-cold atoms and superfluidity (qualitative)	10
	8.3 Fermi-Dirac Statistics	
	8.3.1 Application 1: Electron gas in metals	
	8.3.1.1 Fermi energy, Fermi temperature	
	8.3.1.2 Density of states (qualitative)	
	8.3.2 Application 2: Electron degeneracy pressure	
	8.3.2.1 White Dwarf stars	
	8.3.2.2 Chandrashekhar Limit	

Reference Books :

- 1. Mathematical Methods in the Physical sciences: Mary L. Boas (Wiley India)
- 2. Introduction to Mathematical Methods: Charlie Harper (PHI Learning)
- 3. Thermodynamics, Statistical Thermodynamics and Kinetics: T. Engeland P. Reid (Pearson).
- 4. Perspectives of Modern Physics: Arthur Beiser, (Mc Graw Hill International).
- 5. Fundamentals of statistical and thermal physics: F. Reif (Berkeley Physics Course, McGraw Hill)

Additional References:

- 1. Mathematical Physics: A K Ghatak, Chua 1995 Macmillian India Ltd.
- 2. Mathematical Method of Physics: Riley, Hobson and Bence, Cambridge (Indian edition).
- 3. Mathematical Physics: H. K. Das, S. Chand & Co.
- 4. Mathematical Methods of Physics: Jon Mathews & R. L. Walker, W A Benjamin inc.
- 5. A Treatise on heat: Saha and Srivastava (Indian press, Allahabad)
- 6. Introductory Statistical Mechanics: R. Bowley and M. Sanchez (Oxford Science Publications).
- 7. An Introduction to Thermal Physics: D. V. Schroeder (Pearson).
- 8. Schaum's Outlines Series: S. Lipschutz and M. L. Lipsonv (Mc Graw Hill International).

Paper II Course Code: VSPH301 Credits: 2 Solid State Physics

Course Learning Objective

LO 1	Analyze the electrical properties of metals using classical and quantum free electron
	theories.
LO 2	Explain the magnetic behavior of different materials using classical and quantum
	theories.
LO 3	Apply solid-state concepts to evaluate conduction mechanisms in semiconductors.
LO 4	Understand and compare the properties and applications of Type I and Type II
	superconductors.

Course Code		Paper II	Credits	Lectures	
VSPH301		Solid State Physics	2	30	
Course O	Course Outcomes : Upon Completion of the course the student will be able to				
CO 1	Descr parar	ribe and differentiate magnetic properties such nagnetism, and ferromagnetism using theoretical models		magnetism,	
CO 2	-	rse the electrical behaviour of metals based on classical ding Fermi energy and electron gas theory.	and quant	um models,	
CO 3		v semiconductor theory to calculate carrier concentra activity in intrinsic and extrinsic semiconductors.	tion, Fermi	i level, and	
CO 4	-	in the phenomenon of superconductivity, including the y, and technological applications.	e Meissner	effect, BCS	
Unit	Cont	Content			
	Chap	ter 1: Magnetic properties of materials			
	1.1	Introduction			
	1.2	Magnetization and magnetic field strength			
	1.3	Diamagnetism, Classical theory of diamagnetism Theory)	(Langevin		
Unit 1	1.4	Paramagnetism, Langevin Theory of Paramagnetism		10	
	1.5	Quantum theory of Paramagnetism			
	1.6	Ferromagnetism			
	1.7	Wies theory of Ferromagnetism			
	1.8 Ref	Antiferromagnetism, Ferrimagnetism F - D: 18.1 to 18.4			
	Chap	ter 2: Electrical properties of metals		10	
	2.1 Classical free electron theory of metals			10	

Unit 2	2.2 Drawbacks of classical theory				
	2.3 Relaxation time				
	2.4 Collision time and mean free path				
	2.5 Quantum theory of free electrons				
	2.6 Fermi Dirac statistics and electronic distribution in solids				
	2.7 Density of energy states and Fermi energy				
	2.8 The Fermi distribution function				
	2.9 Heat capacity of the Electron gas				
	2.10 Mean energy of electron gas at 0K				
	2.11 Electrical conductivity from quantum mechanical considerations				
	2.12 Failure of Somerfield's free electron theory Ref - SOP: Ch- 6 - II, III, IV, V, XIV, XV, XVI, XVII, XVIII, XX, XXXV				
	Chapter 3: Conduction in Semiconductors				
	3.1 Electrons and Holes in an intrinsic Semiconductor,				
	3.2 Conductivity of a Semiconductor,				
	3.3 Carrier concentrations in an intrinsic semiconductor,3.4 Donor and Acceptor impurities,				
	3.5 Charge densities in a semiconductor,				
	3.6 Fermi level in extrinsic semiconductors,				
	3.7 Hall Effect.				
Unit 3	Ref - MH: 4.1 to 4.6, 4.10	10			
	Chapter 4: Superconductivity				
	4.1 Experimental Survey,				
	4.2 Occurrence of Superconductivity,				
	4.3 Effect of Magnetic field on Superconductivity,				
	4.4 The Meissner effect,				
	4.5 BCS theory of superconductivity,				
	4.6 Type I and Type II Superconductors,				
	4.7Applications of Superconductivity. Ref - K: Ch – 10				
Reference B	Sooks :				

Reference Books :

- 1. **D** Solid State Physics: A. J. Dekker, Prentice Hall
- 2. SOP Solid State Physics: S. O. Pillai, New Age International. 6th Ed.
- 3. **MH** Electronic Devices and Circuits: Millman, Halkias & Satyabrata Jit. (3rd Ed.) Tata McGraw Hill.
- 4. K Introduction to Solid State Physics-Charles Kittel, 8th Ed. John Wiley

5. **MW** - Solid State Physics: structure and properties of materials by M.A.Wahab; Narosa Publishing house New Delhi

Paper III Course Code: VSPH302 Credits: 2

Atomic & Molecular Physics

Course Learning Objective

LO 1	Understand the quantum mechanical model of hydrogen atom and its implications
	for atomic structure.
LO 2	Describe and analyze the role of electron spin, angular momentum coupling, and
	selection rules in atomic spectra.
LO 3	Explain the interaction of atoms and molecules with external magnetic fields and
	interpret the Zeeman and Raman effects.
LO 4	Apply quantum mechanical principles to understand molecular spectra and magnetic
	resonance phenomena like ESR and NMR.

Course Code		Paper III	Credits	Lectures	
VSPH302		Atomic & Molecular Physics	2	30	
Course Ou	Course Outcomes : Upon Completion of the course the student will be able to				
CO 1	CO 1 Describe the quantum mechanical model of the hydrogen atom and expla numbers and their significance.			in quantum	
CO 2	-	in vector atom model, spin-orbit coupling, selection rul quantum theory.	les and Zee	man effects	
CO 3	-	pret molecular spectra and differentiate between Raman Agnetic Resonance spectra.	n, Infrared,	Microwave,	
CO 4	CO 4 Solve numerical problems based on hydrogen atom energy level momentum, and spectral transitions.			ls, angular	
Unit	Content			No. of Lectures	
	Cha	pter 1: Hydrogen Atom – I			
	1.1	Schrödinger's equation for Hydrogen atom,			
	1.2	Separation of variables,			
	1.3 Nur	Quantum Numbers: Total quantum number, Orbital nber, Magnetic quantum number.	quantum		
Unit 1	Chapter 2: Hydrogen Atom – II		10		
Unit I	2.1	Introduction		10	
	2.2	Angular momentum of electron in H atom			
	2.3	Orbital magnetic moment			
	2.4	Quantization of Lz and space quantization			
	2.5	Atoms in external magnetic field.			
	Cha	pter 3: Electron Spin			

	3.1 Introduction,		
	3.2 Spin of electron		
	3.3 Space quantization of electron spin		
	3.4 Spin magnetic moment and Gyromagnetic ratio of electron spin		
	3.5 The Stern-Gerlach experiment		
	3.6 Pauli's Exclusion Principle		
	3.7 Symmetric and Anti-symmetric wave functions		
	3.8 Hund's rule Ref - B: 9.1 to 9.9, B: 10.1, 10.3. 2		
	Chapter 4: Vector Atom Model		
	4.1 Introduction		
	4.2 Spin-orbit coupling		
	4.3 Total angular momentum & Vector atom model		
	4.4 L-S and j-j coupling.		
	Chapter 5: Atomic Spectra and Selection Rules		
	5.1 Introduction		
	5.2 Quantum theory of Radiative transition,		
Unit 2	5.3 Selection Rule – Allowed and Forbidden Transitions	10	
	5.4 Derivation of selection rule for Magnetic quantum number ml.		
	Chapter 6: Atoms in Magnetic Field		
	6.1 Introduction		
	6.2 Experimental observation of Zeeman's experiment		
	6.3 Classical explanation of Normal Zeeman effect		
	6.4 Quantum Mechanical explanation of Normal Zeeman effect		
	6.5 The Lande g-factor		
	6.6 Anomalous Zeeman effect Ref – B : 10.2, 10.6 -10.9 , 11.1, 11.2		
	Chapter 7: Spectra of Diatomic Molecule		
	7.1 Rotational energy levels,		
	7.2 Rotational spectra of diatomic molecule,		
	7.3 Shortcomings of Rigid Rotator		
Unit 3	7.4 Model of diatomic molecule and non-rigid rotator,	10	
	7.5 Diatomic molecule as Simple Harmonic Oscillator,		
	7.6 Diatomic molecule as anharmonic Oscillator,		
	7.7 Vibrational-Rotational spectra,		
	7.8 Infrared spectrometer & Microwave spectrometer.		

Cha	apter 8: Raman Effect
8.1	Quantum Theory of Raman effect,
8.2	Classical Theory of Raman effect,
8.3	Classification of Molecules Based on Rotational Behaviour,
8.4	Pure Rotational Raman spectra,
8.5	Raman activity of vibrations,
8.6	Vibrational Raman spectra,
8.7	Raman Spectrometer.
Cha	apter 9: Magnetic Resonance (NMR and ESR)
9.1	Electron Spin Resonance,
9.2	Introduction, Principle of ESR, ESR Spectroscopy,
9.3	Nuclear Magnetic Resonance, Introduction, Nuclear Spin,
9.4	Nuclear magnetic moment,
	Principle of NMR, NMR instrumentation. ef – BM : 6.11, 6.1.3.2 4.1.1, 4.1.2, 4.2.2, 4.2.3, 4.3.1, GA : 8.6.1, 10.1, 10.2, 10.3, 11.1 – 11.3

Reference Books :

- 1. **B:** Perspectives of Modern Physics: Arthur Beiser Page 8 of 18 McGraw Hill.
- 2. **BM**: Fundamentals of Molecular Spectroscopy: C. N. Banwell & E. M. McCash (TMH).(4th Ed.)
- 3. **GA:** Molecular structure and spectroscopy: G Aruldhas (2nd Ed) PHI learning Pvt Ltd.
- 4. **SG:** Atomic Physics (Modern Physics): S. N. Ghoshal, S. Chand Publication (for problems on atomic Physics).

Paper IV Course Code: VSPH303 Credits: 2 Electrodynamics

Course Learning Objective

LO 1	Understand and Apply Electrostatic Principles.					
LO 2	Analyze Magnetic Fields in Static Situations.					
LO 3	Investigate the Behavior of Electrostatic and Magnetic Fields in Matter.					
LO 4	Apply Maxwell's Equations and Poynting's Theorem. Understand and Analyze					
	Electromagnetic Wave Propagation.					

Course Code		Paper IV	Credits	Lectures
VSPH3	03	Electrodynamics	2	30
Course Ou	itcome	es : Upon Completion of the course the student will be ab	le to	
CO 1		Fundamental Electrostatic Principles, including Gauss's tial, to analyse Electric Fields in Free Space and Dielectric M		Electrostatic
CO 2	Magn	se Magnetic Fields using Biot-Savart's Law and Amp etization in materials, and apply Faraday's Law to ev sy Storage.		
CO 3	analy	Maxwell's modified equations to describe Electromagn se Energy and Momentum in Electromagnetic Waves, viour at Boundaries and Interfaces.		
CO 4	4 Apply analytical and numerical techniques to solve complex problems involving electra and magnetic fields, electromagnetic wave propagation, and boundary condition demonstrating proficiency in interpreting results and validating solutions throug theoretical principles.			
Unit	nit Content			No. of Lectures
	Chap	ter 1: Electrostatics		
		ntroduction of Electrostatic field lines and Electric flux, omb's Law	Review of	
	1.2 In Gauss	ntegral and Differential Form of Gauss Law and App s Law	lication of	
Unit 1	1.3Th	e Divergence of Electrostatic field, The Curl of Electrosta	tic field	10
		ntroduction to Electrostatic Potential, The potential of a ge distribution	a localized	
	1.5 Pc	bisson's and Laplace's Equations		

	Chapter 2: Electrostatics in Matter	
	2.1 Electric dipoles, Dielectrics-Polar and Non-Polar	
	2.2 Modification of Gauss Law for Dielectrics	
	2.3 Susceptibility, Permittivity and Dielectric Constant	
	2.4 Energy in a linear dielectric system	
	Chapter 3: Magnetostatics	
	3.1 Fundamental Concepts (Volume current density, Surface current density, The equation of Continuity)	
	3.2 Biot - Savart's Law and Ampere's Law (Integral and Differential Form)	
	3.3 The Divergence of magnetic field and the Curl of magnetic field	
	3.4 Application of Ampere's Law	
Unit 2	Chapter 4: Magnetostatics in Matter	
	4.1 Magnetic Vector Potential, Magnetization	
	4.2 Free and Bound Currents, Physical Interpretation of Bound Currents	
	4.3 Ampere's Law in Magnetised Materials	
	4.4 Magnetic Susceptibility and Permeability	
	4.5 Faraday's Law	
	4.6 Energy Stored in Magnetic Fields	
	Chapter 5: Maxwell's Modifications and Poynting's Theorem	
	5.1 Maxwell's Modification Ampere's Law	
	5.2 Modification of Maxwell's Equations in Material Media	
	5.3 Boundary Conditions for Electric Filed and Magnetic Field	
	5.4 Poynting's Theorem (Conversation of Energy)	10
Unit 3	Chapter 6: Electromagnetic waves	
	6.1 The Wave Equation of Electric and Magnetic Field	
	6.2 The Velocity of Electromagnetic Waves	
	6.3 Energy and Momentum in Electromagnetic waves	
	6.4 Propagation in Linear Media	

6.5 Reflection and Transmission of EM Waves at Normal Incidence

6.6 Reflection and Transmission of EM Waves at Oblique Incidence

Reference Books :

- 1. Classical Mechanics, P. V. Panat (Narosa)
- 2. Mechanics: Keith R. Symon, (Addision Wesely) 3rd Ed.
- 3. Classical Mechanics- A Modern Perspective: V. D. Barger and M. G. Olsson. (Mc Graw Hill International 1995 Ed.)
- 4. Classical Mechanics: Herbert Goldstein (Narosa 2nd Ed.)
- 5. An Introduction to Mechanics: Daniel Kleppner & Robert Kolenkow Tata Mc Graw Hill (Indian Ed. 2007)
- 6. Chaotic Dynamics-An Introduction: Baker and Gollub (Cambridge Univ. Press)
- 7. Classical Mechanics: J. C. Upadhyaya (Himalaya Publishing House)
- 8. Classical Mechanics: Gupta, Kumar, Sharma (Pragati Prakashan)

Practical Course Code: VSPH304

Credits: 2 Major Physics Practical	
---	--

Cou	irse Code	Creuts. 2 Major 1 hysics 1 factical	Credits	Lectures		
V	SPH304	Major Physics Practical	2	60		
	Lists of Experiment of GROUP A					
1.	To determine the acceleration due to gravity ('g') using Kater's pendulum					
2.	To study the	e resolving power [R.P.] of a prism				
3.	To study th	e working of Searle's Goniometer				
4.	To study Ed	ser's 'A' interference pattern				
5.	To determin	ne the wavelength of light using a step slit				
6.	To determin	ne the resistivity of a material using the four-probe meth	od			
7.	To study log	garithmic decrement in a damped oscillation system				
8.	To determin	ne Rydberg's constant using hydrogen spectrum				
9.	To determin	ne capacitance using a series bridge method				
10.	To determin	ne capacitance using a parallel bridge method				
11.	To study the	e temperature dependence of bandgap energy of a Ge die	ode			
12.	To study th	e Hall effect in a semiconductor sample				
	1	Lists of Experiment of GROUP B				
1.	To study th	e logarithmic amplifier using an op-amp				
2.	To design a	an antilogarithmic amplifier using an op-amp				
3.	To design a	in inverting summing amplifier using an op-amp				
4.	To design a	and study a Schmitt trigger in inverting mode using an o	p-amp			
5.	To design a	and study a Schmitt trigger in non-inverting mode using	an op-amp)		
6.	To implem	ent an R-2R ladder binary digital-to-analog (DAC) conve	rter using	op-amps		
7.	To implement a binary-weighted ladder DAC using op-amps					
8.	To design a	and study a Wien bridge oscillator using an operational a	mplifier			
9.	To design a	and study an astable multivibrator using an op-amp				
10.	To design a	a wave generator (sine, square, and triangular waves) us	ing an op-	amp		
11.	To design a	To design and study an instrumentation amplifier using op-amps				
12.	To study the characteristics of a photodiode and phototransistor					

Note: Minimum **7 from each group** and **total 14 experiments** should be completed in the first semester. All experiments are to be reported in a journal. Certified journal is must to be eligible to appear for the semester end practical.

Elective Paper I Course Code: VSPH305 Credits: 2

8085 Microprocessor

Course Learning Objective

LO 1	Describe the historical development, basic structure, and programming model of the 8085 microprocessor.
LO 2	Write and execute assembly language programs using arithmetic, logical, and branching instructions.
LO 3	Use stack and subroutine instructions along with 8255 interfacing techniques to perform input/output operations.
LO 4	Construct and evaluate time delay routines and counters based on instruction timings and loops.

Course Code		Elective Paper I	Credits	Lectures
VSPH305		8085 Microprocessor	2	30
Course Ou	itcome	es : Upon Completion of the course the student will be ab	le to	
CO 1	-	in the architecture, organization, and working of the ling its programming model.	8085 micro	processors,
CO 2		op Assembly Language Programs using the 808 essing modes.	5-instructio	n set and
CO 3	-	ment stack operations, subroutines, and peripheral i analysing instruction timings.	nterfacing	(8255 PPI)
CO 4	-	n and implement timing delays and counters usin cations.	g 8085 fo	r real-time
Unit	Content			No. of Lectures
Unit 1	Introduction to Microprocessors and 8085 Architecture Introduction, Historical Perspective, Organization of a Microprocessor- Based System, How the Microprocessor Works, Machine Language, Assembly Language, High-Level Languages, Writing and Executing an Assembly Language Program, 8085 Bus Organization, 8085 Programming Model, The 8085 Microprocessor Architecture, Pin Connection Diagram and Function of Each Pin. Ref - RG : Ch - 3, 4			10
Unit 2	Instruction Set and Addressing Modes of 8085Basic Definitions: Instruction, Opcode, Operand, Instruction Word Size,Instruction Format, Data Format, Addressing Modes, 8085 Instruction			10

	Set Classification, Data Transfer Operations, Arithmetic Operations, Logical Operations, Branch Operations, Introduction to Advanced Instructions, Flowchart Representation of Instructions. Ref - RG : Ch - 6, 7	
Unit 3	Stack, Peripheral Interfacing, and Timing Analysis Stack and Subroutines: Stack, Subroutine, the 8255 ProgrammablePeripheral Interface, Block Diagram of the 8255, Mode 0 – Simple Input/Output Mode, Bit Set/Reset (BSR) Mode, Counters, Time Delay Using One Register, Time Delay Using a Pair of Registers, Loop Within Loop for Delay, Instruction Timings of 8085, T-States, Delay Routines, Delay Calculations.Ref - RG : 9.1 - 9.4, 8.1 - 8.4	10

Reference Books :

- 1. **RG** : Microprocessor Architecture, Programming, and Applications with the 8085 by Ramesh S. Gaonkar, 5th Edition, Penram International Publishing
- 2. **B**: 8085 Microprocessor: Architecture and Programming by P.B. Borole, 1st Edition, Technical Publications.

Elective Paper - I Course Code: VSPH306 Credits: 2

8085 Microprocessor Practical

Course Code VSPH306		Practical based on 8085 Microprocessor	Credits 2	Lectures 60	
1.	Write an ALP to perform two 8-bit addition.				
2.	Write an A	LP to perform two 8-bit subtraction.			
3.	Write an A memory.	ALP to find the sum of an array of numbers and	store the	result in	
4.	Write an A	LP to multiply two 8-bit numbers using repeated ad	dition met	hod.	
5.	Write an A	LP to divide two 8-bit numbers using Repeated sub	traction me	ethod.	
6.	Write an A	LP to find the largest / smallest number in an array.			
7.	Write an A	LP to count the number of positive / Negative numb	ers in an a	rray.	
8.	Write an A	LP to count the number of even / odd numbers in a	n array.		
9.	Write an A instruction	ALP to perform the addition of two 16-bit numb.	ers using	the DAD	
10.	Write an A	LP to perform the subtraction of two 16-bit number	'S.		
11.	Write an A	LP to generate a square wave using the 8085 micro	processors.		
12.	Write an A	LP to generate a triangular wave using the 8085 mid	croprocess	ors.	
13.	Write an A	LP to generate a trapezoidal wave using the 8085 m	icroproces	sors.	
14.	Write an A	LP to interface a 7-segment display with the 8085.			
15.	Write an ALP to control a stepper motor using the 8085.				
16.	Perform AND, OR, XOR and NOT Operations on Two 8-bit Numbers.				
17.	Write an ALP to transfer a block of data bytes from one memory location to another.				
18.	Write an ALP to arrange a set of numbers in ascending / descending order.				
19.	Write an ALP to interface an LED with 8085 and blink it at regular intervals.				

Note: A **minimum of 12 experiments** must be completed from the elective paper in Semester V. All experiments should be recorded **neatly in a certified journal**. Submission of the certified journal is **compulsory to be eligible** for the semester-end practical examination.

Elective Paper - II Course Code: VSPH307 Credits: 2

Solar Energy

Course Learning Objective

LO 1	Explain the interaction of solar radiation with the earth and interpret radiation
	measurements using various instruments.
LO 2	Analyze the working and characteristics of different types of solar cells and evaluate
	their efficiency using key performance metrics.
LO 3	Apply knowledge of PV and thermal technologies to propose solar-based solutions
	for heating, cooking, and power generation.
LO 4	Assess recent innovations, smart technologies (AI, IoT), and policy initiatives in
	solar energy to recommend future directions in the field.

Course Code		Elective Paper II	Credits	Lectures
VSPH307		Solar Energy	2	30
Course Ou	itcome	es : Upon Completion of the course the student will be ab	ole to	
CO 1		ibe the basic concepts of solar radiation, sun–earth geon urement techniques using relevant instrumentation.	netry, and	
CO 2		v knowledge of solar cell technology and performance an ency and power generation	alysis to eva	luate
CO 3		op solutions for solar energy utilization through PV systemal applications.	ems, storage	e, and
CO 4	CO 4 Design and analyse real-world solar energy applications while considering technological trends and policies.			g future
Unit	Content			No. of Lectures
	Chap	ter 1: Solar Radiation and Measurement		
	1.1 Introduction to Solar Energy: Importance of renewable energy,			
	Overview of solar energy potential			
	1.2 Solar Radiation Basics: Structure of the Sun and energy production			
Unit 1	(p-p Chain, CNO Cycle), Solar constant and solar spectrum, Sun-Earth			10
	angle	s (Declination, Zenith, Azimuth, Tilt Factor), Local S	Solar Time	
	(LST)	, Standard Time, Solar Noon. Air Mass, Scattering, A	bsorption,	
	Albed	lo effect		
	1.3 M	Measurement of Solar Radiation: Pyrheliometers (Angstrom,	

	Abbot Silver Disc, Eppley), Pyranometers (Eppley, Yellot Solarimeter), Solar radiation on horizontal and tilted surfaces	
Unit 2	 Chapter 2: Solar Photovoltaic (PV) Systems 2.1 Photovoltaic Effect and Solar Cells - Working principle of a solar cell, Semiconductor materials used (Si, GaAs, Perovskite) 2.2 Performance Analysis of Solar PV Cells - Open circuit voltage, short circuit current, Power, efficiency, fill factor, Limitations and challenges of solar cells 2.3 Solar Power Plants - Autonomous solar power plants (Off-grid), Grid-connected solar power plants, Hybrid solar power systems 	10
Unit 3	 Chapter 3: Solar Energy Applications and Future Trends 3.1 Solar Thermal Systems - Solar water heaters, solar cookers, Solar dryers, solar greenhouses 3.2 Solar Energy Storage and Efficiency Enhancement - Energy storage methods (Batteries, Thermal Storage), Solar tracking systems for efficiency improvement 3.3 Recent Advances and Future Prospects - Emerging technologies in solar energy, Role of AI and IoT in solar energy optimization, Policies and initiatives for solar energy development 	10

Reference Books :

- 1. Non-Conventional Energy Sources G. D. Rai, 6th Edition, Khanna Publishers
- 2. Physics of Solar Energy C. Julian Chen, 1st Edition, John Wiley & Sons Inc.
- 3. Solar Energy: Fundamentals and Applications Saurabh Kumar Rajput, 1st Edition, Nitra Publications
- 4. Solar Photovoltaics: Fundamentals, Technologies and Applications Chetan Singh Solanki, 3rd Edition, PHI Learning Pvt. Ltd.

Elective Paper - II Course Code: VSPH308

Credits: 2 Solar Energy Practical

	rse Code SPH308	Solar Energy Practical	Credits 2	Lectures 60	
1.	Calculate solar declination, azimuth angle, and Local Solar Time (LST).				
2.	Measure and compare solar radiation intensity at different times of the day.				
3.	I-V Charac	teristics of a Solar Cell			
4.	Measure th calculate e	ne output power of a solar panel under different ligh fficiency.	t intensitie	s and	
5.	Analyze th	e impact of connecting solar panels in series on volta	age and cu	rrent.	
6.	Analyze the impact of connecting solar panels parallel on voltage and current.				
7.	Observe changes in output voltage and current with varying temperatures.				
8.	Power a small DC load using a solar panel, battery, and charge controller.				
9.	Analyzing the Effect of Shading on Solar Panel Output				
10.	Installation of Solar Panel				
11.	Installation Procedure of Solar Panel on-Grid and Off-Grid				
12.	Making a Solar Toy using DIY Solar Panel				

Note: A **minimum of 12 experiments** must be completed from the elective paper in Semester V. All experiments should be recorded **neatly in a certified journal**. Submission of the certified journal is **compulsory to be eligible** for the semester-end practical examination.

Vocational Skill Course Course Code: VSPH309

Credits: 2

Introduction to Python Programming

Course Learning Objective

LO 1	Identify and apply Python syntax, variables, data types, and operators in simple code
	snippets.
LO 2	Construct conditional and looping structures to solve logical problems
LO 3	Implement and manipulate data using lists, tuples, sets, dictionaries, and strings in
	Python
LO 4	Create Python programs using object-oriented concepts such as classes, inheritance,
	and encapsulation to solve real-world problems.

Course Code		VSC –	Credits	Lectures	
VSPH309		Introduction to Python Programming	2	60	
Course O	ourse Outcomes : Upon Completion of the course the student will be able to				
CO 1		Recall and understand fundamental programming concepts in Python, including syntax, variables, data types, operators, and debugging techniques.			
CO 2		Analyse and apply control structures, such as conditional statements, loops, and control flow mechanisms, to solve computational problems.			
CO 3	Manip	ulate, process, and evaluate data using Python's built-in c	lata and fun	ctions.	
CO 4	Design, develop, and evaluate object-oriented programs by incorporating concepts such as classes, objects, inheritance, polymorphism, encapsulation, and data hiding.				
Unit	Conte	Content			
	Introd	Introduction to Python and Basics of Programming			
	and	roduction to Python: History, Features, Applications Engineering , Installing Python, Running Python eractive Mode & Script Mode)			
Unit 1	The	iables, Data Types, Type Conversion, Operators, and Ex Difference Between Brackets, Braces, and Parentheses trations		10	
	3. Con	ditional Statements: if, if-else, nested if-else			
	4. Loo	ps: for, while, nested loops			
	5. Co n	trol Statements: break, continue, pass			
		bugging: Syntax Errors, Runtime Errors, Logical Error C h – 3, 4			

	Functions and Data Structures	
	1. Lists: Creating, Accessing, Modifying, Traversing, Slicing, List Methods	
	2. Tuples : Creating, Accessing, Traversing, Slicing, Tuple Packing and Unpacking	
	3. Dictionaries : Creating, Accessing, Updating, Dictionary Methods (e.g., keys(), values(), get(), pop(),etc.)	
Unit 2	4. Sets : Creating, Accessing, Modifying, Set Methods, Membership Testing	10
	5. Strings : Creating, Accessing, Modifying, Traversing, Slicing, String Methods	
	6. Functions : Defining and Calling Functions, Arguments, Return Values, Scope & Lifetime of Variables	
	 7. Built-in Functions, User-defined Functions, Recursion RT: Ch – 8, 6, 5 	
	 Advanced Python Concepts and Object-Oriented Programming 1. File Handling: Reading and Writing Files, Working with Text Files and CSV Files, Appending Data to Files, Handling File Paths, 	
	2. Exception Handling: Understanding Errors and Exceptions, Using try, except, else, and finally Blocks, Raising Exceptions (raise statement)	
Unit 3	3. Modules and Packages: Importing and Using Modules, Creating and Exploring Custom Modules, Standard Modules: math, random, time, Introduction to Python Packages	10
	4. Object-Oriented Programming (OOP) in Python: Classes and Objects, Attributes and Methods, self-Parameter and Constructor (init), Instances as Arguments and Return Values, Built-in Class Attributes, OOP Advanced Concepts: Inheritance and its type, Method Overriding, Polymorphism, Encapsulation and Data Hiding.	
	RT : Ch - 7, 12, 9, 10, 11	

Reference Books :

- 1. **RT**: Python Programming: Using Problem solving approach by Reema Thareja, Oxford University press (2nd Edition)
- 2. **AG** : Scientific Computing in Python by Abhijit Kar Gupta 2nd edition, Tehno World Publication
- 3. Think Python: How to Think Like a Computer Scientist by Allen B. Downey, 2nd Edition, Shroff/O'Reilly Publication
- 4. Core Programming by R. Nageswara Rao, 3rd Ed. Dreamtech Press
- 5. Python Documentation <u>https://docs.python.org/3/tutorial/index.html</u>

		Introduction to Python Practical	Le	ectures 30		
1.	Check if a r	Check if a number is Even or Odd.				
2.	Find the greatest of three numbers using nested if-else statements.					
3.	Find the su	um of digits of a number.				
4.	Generate tl	the Fibonacci series up to a given number using a loop.				
5.	Check whe	ether a given number is a palindrome using loops.				
6.	Write a pro	ogram to print a different pattern using nested loops.				
7.	Find the fa	actorial of a number using a loop.				
8.	Print all Ar	rmstrong numbers in a given range.				
9.	Print all Pr	rime numbers in a given range.				
10.	Perform basic operations on a list (creation, accessing elements, modifying, slicing, and applying list methods).					
11.	Perform tu	uple operations (creation, accessing, traversing, slicing, ar	nd unpacl	king).		
12.		ictionary operations (insertion, deletion, updating, retriev s, and using dictionary methods).	ving value	es		
13.	Perform set operations (creating, adding elements, removing elements, membership testing, and applying set methods).					
14.	Perform st string meth	tring operations (accessing, modifying, slicing, concatenat hods).	tion, and	using		
15.	Write a fur dictionary.	nction to count the frequency of elements in a given list us	sing a			
16.	Write a rec	cursive function to find the factorial of a number.				
17.	Write a pro dictionary.	rogram to count the occurrences of each word in a given str.	tring usin	ng a		
18.	Sort a dicti	ionary by keys and values in ascending and descending or	rder.			
19.		Write a program to handle multiple exceptions (e.g., IndexError, KeyError, TypeError) while accessing a list and dictionary.				
20.	Demonstrate the use of try, except, else, and finally blocks in a program that opens a file.					
21.	Import and operations	d use built-in modules (math, random, time) to perform v s.	various			
22.		Develop a package containing multiple modules for scientific calculations (e.g., physics formulas like motion, energy, etc.).				
23.		ass Student with attributes name, age, and marks, and im display student details.	plement	а		

24.	Demonstrate polymorphism using method overriding and operator overloading.
25.	Develop a BankAccount class with deposit, withdrawal, balance inquiry.
26.	Implement a Student class with methods to calculate and display percentage from marks.

Note: A **minimum of 16 experiments** must be completed from the VSC paper in Semester V. All experiments should be recorded **neatly in a certified journal**. Submission of the certified journal is **compulsory to be eligible** for the semester-end practical examination.

Minor Theory Course Code: VSPH310 Credits: 2 Semiconductor Devices – 1

Course Learning Objective

LO 1	Identify and apply Python syntax, variables, data types, and operators in simple code
	snippets.
LO 2	Construct conditional and looping structures to solve logical problems
LO 3	Implement and manipulate data using lists, tuples, sets, dictionaries, and strings in
	Python
LO 4	Create Python programs using object-oriented concepts such as classes, inheritance,
	and encapsulation to solve real-world problems.

Course Code		Minor –	Credits	Lectures	
VSPH310		Semiconductor Devices – 1	2	30	
Course Out	comes :	Upon Completion of the course the student will be	able to		
	Understand the construction, working, and characteristics of BJTs and UJTs, and their application as switches and oscillators				
	-	the functioning and characteristics of various FETs, 's in switching applications.	including J	FETs and	
		perational amplifiers in basic linear circuit configura rs, adders, and subtractors.	tions such	as	
	Evaluate different op-amp applications like integrators, differentiators, and comparators in signal processing tasks.				
Unit	Content			No. of Lectures	
Unit 1	1.1 Ir 1.2 T; 1.3 C 1.4 T; 1.5 C 1.6 G 1.7 T; Chapten 2.1 C 2.2 C 2.3 U	 1: Bipolar Junction Transistor (BJT) htroduction, ypes of transistors, onstruction and working of transistor, ransistor as amplifier, haracteristics of transistor (CB, CE & CC), ain in transistor, ransistor as switch. 7: Unijunction Transistor (UJT) onstruction & working, haracteristics of UJT, JT as a relaxation oscillator. M - 8.1, 8.2, 8.3, 8.4, 8.6, 8.9, 8.10, 8.12, 8.13, 21. 		10	

	21.15	
Unit 2	 Chapter 3 : Field Effect Transistors (FET) 3.1 Introduction 3.2 Types of FET, Construction and working of JFET 3.3 Characteristics of JFET 3.4 JFET as switch 3.5 Construction and working of depletion type MOSFET (DMOSFET) 3.6 Characteristics of depletion MOSFET 	10
	 3.7 Construction and working of enhancement MOSFET (EMOSFET) 3.8 Enhancement MOSFET as switch Ref : VM - 19.1, 19.2, 19.3, 19.8, 19.27, 19.28, 9.9, 19.30, 19.31,19.36 	
Unit 3	 Chapter 4 : Operational Amplifiers 4.1 Introduction, 4.2 Schematic symbol of operational amplifier, 4.3 Features of Operational Amplifier, 4.4 Op-amp as inverting amplifier, 4.5 Op-amp as non-inverting amplifier, 4.6 Applications of Op-amp, Op-amp as adder, Op-amp as subtractor, Op-amp as integrator, Op-amp as differentiator, Op-amp as comparator Ref : VM - 25.16, 25.24, 25.26, 25.27, 25.32, 25.35, 25.37, 25.38 	10

Reference Books

- 1. VM: Principles of Electronics V. K. Mehta and Rohit Mehta. (S. Chand –Multicolor revised edition)
- 2. MB: Electronic Principles, Malvino& Bates -7th Edition TMH Publication.
- 3. AM: Electronic Devices and Circuits, Allen Mottershead -PHI Publication.
- 4. KVR: Functional Electronics, K.V. Ramanan-TMH Publication

Minor Practical Course Code: VSPH311 Credits: 2 Semiconductor Devices – 1 Practical

Credits: 2 Semiconductor Devices – 1 Practical					
	rse Code PH311	Semiconductor Devices – 1 Practical	Credits 2	Lectures 60	
1.	To study C	E characteristics of Transistor			
2.	To study CB characteristics of Transistor				
3.	To study fr	requency response of CE amplifier			
4.	To study a	nd design transistor as switch			
5.	To study U	JT characteristics			
6.	To study U	JT as relaxation oscillators			
7.	To study JI	FET characteristics			
8.	To study M	IOSFET characteristics			
9.	To study a	nd design MOSFET as switch			
10.	To study O	p-amp as Inverting amplifier			
11.	To study O	p-amp as non-inverting amplifier			
12.	To study O	p-amp as voltage follower			
13.	To study O	p-amp as summing amplifier			
14.	To study O	p-amp as difference amplifier			
15.	To study O	p-amp as astable/Square wave generator			
16.	To study O	p-amp as integrator			
17.	To study O	p-amp as differentiator			
18.	Op-Amp as	Wave generator (Sine, Square and Triangular)			

Note: A **minimum of 12 experiments** must be completed from the Minor paper in Semester V. All experiments should be recorded **neatly in a certified journal**. Submission of the certified journal is **compulsory to be eligible** for the semester-end practical examination.

Field Project Course Code: VSPH312 Credits: 2 Guidelines for Field Project (FP)

General Instructions

- **1.** Each student is expected to dedicate 60 hours to complete the Field Project.
- **2.** The actual fieldwork must be conducted outside regular college hours during holidays, weekends, or vacations.
- **3.** Successful completion and submission of the Field Project is mandatory for the award of the degree.
- **4.** The Field Project carries 2 credits, and evaluation will be done for 50 marks.
- 5. Students must pass this course to be eligible for the B.Sc. degree.

Project Implementation Instructions

- **1.** Students should engage in hands-on field learning/projects under the supervision of a faculty guide.
- 2. A minimum of 30 hours per credit is required per semester.
- 3. Students may work individually or in groups (2–3 students per group).
- 4. Each group will be assigned a faculty guide for mentorship.
- **5.** Prepare a questionnaire of 20–30 questions (or more) in English or Marathi, depending on the topic.
- **6.** For non-survey-based projects (e.g., sample/data collection), the questionnaire may be replaced by another appropriate method.
- 7. Faculty guides or coordinators must review and finalize the questionnaire.
- **8.** Avoid questions that may create unnecessary complications.
- 9. Ensure the questionnaire includes both qualitative and quantitative questions.
- **10.** Conduct field visits and collect at least 50 responses or samples.
- **11.** Record all field data and observations clearly and systematically.
- **12.** Analyze the collected data using appropriate tools, tables, graphs, or software.
- **13.** Prepare a project report with the structure: Index, Chapters (1, 2, 3...), Conclusion, References.
- **14.** The report must be typed in Times New Roman, font size 12, 1.5 spacing, and have a minimum of 25 pages, excluding title and prelims.

- **15.** Submit two hard copies of the project report signed by the faculty guide to the departmental FP coordinator.
- **16.** All students must give an oral presentation of their project in front of an internal departmental panel.
- **17.** Two examiners will be appointed by the HoD for evaluation.
- 18. The evaluation will be done as per the guidelines provided by the Examination Cell.
- **19.** The certified project report and oral presentation are mandatory for appearing in the practical examination.
- **20.** Projects will be assessed on topic selection, study design, fieldwork, analysis, reporting, and presentation.

Typical Time and marks allocation for the different stages of the field project is:

Step of Project	Individual students work in hours	Marks
Topic Selection	5	3
Study Design and Survey preparation	15	10
Fieldwork	20	12
Analysis	10	5
Report writing	10	10
Oral Presentation	-	10
Total	60	50

Semester – VI

Paper I Course Code: VSPH350 Credits: 2

Classical Mechanics

Course Learning Objective

LO 1	Analyze motion in non-inertial reference frames by applying the concepts of				
	translational and rotational coordinate transformations, including the effects of				
	Earth's rotation. Solve problems in central force motion using the inverse-square				
	law, orbital mechanics, and Kepler's laws.				
LO 2	Formulate equations of motion for constrained systems using D'Alembert's principle				
	and Lagrangian mechanics.				
LO 3	Understand rigid body dynamics by applying Euler's equations, moments of inertia,				
	and torque in rotational motion.				
LO 4	Interpret fluid motion mathematically through the continuity equation, Euler's				
	equations for ideal fluids, and fundamental conservation laws.				

Course Code		Paper I	Credits	Lectures	
VSPH350		Classical Mechanics	2	30	
Course Ou	Course Outcomes : Upon Completion of the course the student will be able to				
CO 1		op the ability to apply coordinate transformations and dy the motion of particles in rotating frames and gravita			
CO 2		ulate and analyse the equations of motion for cons mbert's principle and Lagrangian mechanics.	trained sys	tems using	
CO 3		rstand and apply the principles of rigid body rotation a semotion using inertia, Euler's equations, and conservat		nematics to	
CO 4	Apply numerical techniques to solve complex problems in particle dynamics body motion, and fluid mechanics.				
Unit	Content			No. of Lectures	
	Chap	ter 1: Moving Coordinate Systems			
	1.1 Co	oordinate frames with relative translational motion			
	1.2 Co	oordinate frames with relative rotational motion			
Unit 1	1.3 La	aws of Motion on the rotating earth		10	
	1.4 Fc	oucault Pendulum			
	1.5 L	armor's Theorem			
	Chap	ter 2: Motion Under a Central Force			

	21 Matting of a martial and the influence of a sector life of			
	2.1 Motion of a particle under the influence of a central force			
	2.2 Inverse square law of Force			
	2.3 Elliptical orbits			
	2.4 The Kepler problem			
	Chapter 3: Constraints and D'Alembert's Principle			
	3.1 Degree of Freedom			
	3.2 Constraints and different types of constraints			
	3.3 Virtual displacement, Virtual work, D' Alembert's principle			
Unit 2	Chapter 4: Lagrangian Mechanics	10		
	4.1 Generalized Coordinates			
	4.2 Lagrange's equation with one degree of freedom			
	4.3 Applications of Lagrange's equation			
	4.4 Canonical momentum			
	4.5 Cyclic coordinates			
	Chapter 5: Rotation of a Rigid Body			
	5.1Moments and Products of Inertia			
	5.2 Principal axes and principal moments			
	5.3 Euler's equation of motion for a rigid body			
Unit 3	5.4 Torque and Kinetic Energy	10		
onito	5.5 Euler Angles	10		
	Chapter 6: kinematics of Moving Fluids			
	6.1Equation of Continuity			
	6.2 Euler's equation of motion for an Ideal Fluid			
	6.3 Conservation laws for fluid motion			
eference B	ooks •			

- 1. Classical Mechanics, P. V. Panat (Narosa)
- 2. Mechanics: Keith R. Symon, (Addision Wesely) 3rd Ed.
- 3. Classical Mechanics- A Modern Perspective: V. D. Barger and M. G. Olsson. (Mc Graw Hill International 1995 Ed.)
- 4. Classical Mechanics: Herbert Goldstein (Narosa 2nd Ed.)
- 5. An Introduction to Mechanics: Daniel Kleppner & Robert Kolenkow Tata Mc Graw Hill

(Indian Ed. 2007)

- 6. Classical Mechanics: J. C. Upadhyaya (Himalaya Publishing House)
- 7. Classical Mechanics: Gupta, Kumar, Sharma (Pragati Prakashan)

Paper II Course Code: VSPH351 Credits: 2 Electronics

Course Learning Objective

LO 1	Explain the working principles and characteristics of JFET, MOSFET (depletion and enhancement), and UJT.
LO 2	Construct and simulate JFET/MOSFET circuits used as amplifiers and switches in practical applications like multiplexers and VCRs.
LO 3	Identify and analyze op-amp configurations and calculate parameters such as gain, CMRR, and output voltage for different op-amp applications.
LO 4	Design and evaluate multivibrators and waveform generators using transistors and 555 timers, including applications like PWM and PPM.

Course Code		Paper II	Credits	Lectures	
VSPH351		Electronics	2	30	
Course Ou	Course Outcomes : Upon Completion of the course the student will be able to				
CO 1	Describe the construction, working, and characteristics of JFET, MOSFET, and U and evaluate their use in amplifier and switching circuits.				
CO 2	5	rse and apply differential amplifiers and operational us linear and nonlinear applications.	amplifier	circuits for	
CO 3	_	n and implement multivibrator circuits using transistor form generation and signal processing.	rs and IC 55	5 timer for	
CO 4	CO 4 Compare the performance of various electronic components and circui applications in oscillation, modulation, and signal shaping.			ts based on	
Unit	Content			No. of Lectures	
	Chap	ter 1: JFET			
	1.1 Ir	itroduction			
	1.2 C	onstruction and working, Characteristics			
	1.2 B	iasing of JFET			
	1.3 JF	ET as common source amplifier, JFET as switch			
Unit 1		Application of JFET (multiplexer, voltage-controlled ent sourcing)	l resistor,	10	
	Chap	ter 2: MOSFET			
	2.1 Ir	ntroduction, Types of MOSFET (Depletion and Enhancem	ent mode)		
	2.2 D	epletion MOSFET: construction, operation, Characteristic	CS		
	2.3 E	nhancement MOSFET: construction, operation, Character	ristics		

	2.4 MOSFET as switch.	
	Chapter 3: Unijunction Transistor (UJT) 3.1 Construction, working, Characteristics	
	3.2 UJT as a relaxation oscillator.	
	Ref : VM - 19.1, 19.2, 19.3, 19.8, 19.27, 19.28, 9.9, 19.30, 19.31,19.36, 21.11, 21.13, 21.15	
	Chapter 4: Operational Amplifiers	
	4.1 Block diagram of Operational Amplifier	
	4.2 Basic circuit of differential amplifier using transistor, Operation of differential amplifier, Common mode and Differential mode signals, Voltage gain of differential amplifier, Common–mode Rejection Ratio, DC of differential amplifier.	
	Chapter 5: Applications of Op-Amp	
Unit 2	5.1 Log amplifier	10
01111 -	5.2 Instrumentation amplifiers	10
	5.3 first order Active filters	
	5.4 Astable multivibrator using OP AMP	
	5.5 Square wave and triangular wave generator using OP AMP	
	5.6 Wein-bridge oscillator using OP AMP	
	5.7 Comparators with Hysteresis, Window Comparator, Schmitt trigger.	
	Ref: MB: 17.1 to 17.5 2. 2., 20.5, 21.4, 22.2, 22.3, 22.4, 22.7, 22.8, 23.2	
	Chapter 6: Transistor Multivibrators	
	6.1 Astable Multivibrator	
	6.2 Monostable Multivibrator	
	6.3 Bistable Multivibrator	
	6.4 Schmitt trigger	
	6.5 Problems.	
	Chapter 7: 555 Timer	
Unit 3	7.1 Block diagram of 555 timer	10
	7.2 555 timer as Monostable multivibrator	
	7.3 555 timer as Astable multivibrator	
	7.4 555 timer as Voltage Controlled Oscillator	
	7.5 555 timer as Pulse width modulation and Pulse Position Modulation	
	7.6 555 timer as Triggered linear ramp generator.	
	Ref: KVR: 14.5.2.1, 14.5.2.5, 14.5.2.6, 14.5.4.1	

- 1. VM: Principles of Electronics V. K. Mehta and Rohit Mehta. (S. Chand –Multicolor revised edition)
- 2. MB: Electronic Principles, Malvino& Bates -7th Edition TMH Publication.
- 3. AM: Electronic Devices and Circuits, Allen Mottershead -PHI Publication.
- 4. KVR: Functional Electronics, K.V. Ramanan-TMH Publication

Paper III Course Code: VSPH352 Credits: 2 Nuclear Physics

Course Learning Objective

LO 1	Describe the energy, velocity, and range of alpha and beta particles and explain the			
	fine structure and decay mechanisms using barrier penetration and Pauli's neutrino			
	hypothesis.			
LO 2	Apply nuclear models like the Weizsäcker formula and mass parabolas to predict			
	beta decay and assess nuclear stability.			
LO 3	Compare the construction and working of ionization chambers, proportional			
	counters, and GM counters used in nuclear detection.			
LO 4	Classify elementary particles and apply conservation laws to understand nuclear			
	reactions and the role of mesons in nuclear forces.			

Course Code		Paper III	Credits	Lectures	
VSPH352		Nuclear Physics	2	30	
Course Ou	Course Outcomes : Upon Completion of the course the student will be able to				
CO 1	-	Explain the fundamental concepts and processes involved in alpha and beta decay, including particle interactions, spectra, and detection techniques.			
CO 2		ribe and analyse gamma decay, nuclear models, and stabil eworks such as selection rules, the shell model, and the se 11a.			
CO 3		rate the working principles of particle accelerators and di nteractions of elementary particles and nuclear forces.	scuss the p	roperties	
CO 4	probl	Apply relevant physical laws and mathematical techniques to solve numerical problems related to nuclear decay, particle detection, nuclear models, and accelerator-based physics.			
Unit	Content			No. of Lectures	
	Chap	ter 1: Alpha Decay			
	1.1	Introduction			
	1.2	Velocity, energy, and Absorption of alpha particles			
	1.3	Range, Ionization and stopping power, nuclear energy le	evels		
	1.4	Range of alpha particles			
Unit 1	1.5	Alpha particle spectrum		10	
		Fine structure, long range alpha particles, Alpha decay prier penetration (Gamow's theory of alpha decay and lttal law)			
	1.7	G.M. Counter			
	Chap	ter 2: Beta Decay			

	2.1 Introduction		
	2.2 Velocity and energy of beta particles		
	2.3 Energy levels and decay schemes		
	2.4 Continuous beta ray spectrum		
	2.5 Difficulties encountered to understand it		
	2.6 Pauli's neutrino hypothesis		
	2.7 Detection of neutrino		
	2.8 Energies of beta decay		
	2.9 Ionization Chamber		
	2.10 Proportional Counter		
	Reference:		
	1. IK: 13. 1, 13.2, 13.5, SBP: 4. II. 1, 4. II. 2, 4. II. 3, 1.II.3		
	2. IK: 14.1, 14.7, SBP: 4. III. 1, 4. III. 2, 4. III. 3, 4. III. 5, SNG : 5.5.		
	Chapter 3: Gamma Decay		
	3.1 Introduction		
	3.2 Selection rules		
	3.3 Internal conversion		
	3.4 Nuclear isomerism		
	3.5 Mossbauer effect		
	Chapter 4: Nuclear Models		
	4.1 Liquid drop model		
Unit 2	4.2 Weizsacker's semi-empirical mass formula	10	
	4.3 Mass parabolas - Prediction of stability against beta decay for members of an isobaric family		
	4.4 Stability limits against spontaneous fission		
	4.5 Shell model (Qualitative)		
	4.6 Magic numbers in the nucleus.		
	Reference:		
	1. SBP: 4. IV. 1, 4. IV.2, 4. IV. 3, 4. IV. 4, 9.4		
	2. SBP: 5.1, 5.3, 5.4, 5.5. AB: 11.6-pages (460,461).		
	Chapter 5: Particle Accelerators		
	5.1 Cyclotron		
	5.2 Synchrotron		
Unit 3	5.3 Betatron and Idea of Large Hadron Collider		
	Chapter 6: Nuclear Force		
	6.1 Introduction,		

 6.2 Deuteron problem,
6.3 Meson theory of Nuclear Force - A qualitative discussion
Chapter 7: Elementary Particle
7.1 Introduction
7.2 Classification of elementary particles
7.3 Particle interactions
7.4 Conservation laws (linear & angular momentum, energy, charge, baryon number & lepton number)
Reference:
1. SBP: 6.1, 6.3 to 6.9, 9.6, 9.7, 8.1,8.2,8.3
2. SBP: 1.I.4 (i), 1.I.4 (ii), 1.I.4 (iii), 1.I.4 (iv), 6.9, AB: 13.3

- **1. AB:** Concepts of Modern Physics: Arthur Beiser, Shobhit Mahajan, S Rai Choudhury (6th Ed.) (TMH).
- 2. **SBP:** Nuclear Physics, S.B. Patel (Wiley Eastern Ltd.).
- 3. IK: Nuclear Physics, Irving Kaplan (2nd Ed.) (Addison Wesley).
- 4. SNG: Nuclear Physics, S. N. Ghoshal (S. Chand & Co.)
- 5. DCT: Nuclear Physics, D. C. Tayal (Himalayan Publishing House) 5th ed

Additional References

- 1. Modern Physics: Kenneth Krane (2nd Ed.), John Wiley & Sons.
- 2. Atomic & Nuclear Physics: N Subrahmanyam, Brij Lal. (Revised by Jivan Seshan.) S. Chand.
- 3. Atomic & Nuclear Physics: A B Gupta & Dipak Ghosh Books & Allied (P) Ltd
- 4. Introduction to Elementary Particles: David Griffith, Second Revised Edition, Wiley-

Paper IV Course Code: VSPH353 Credits: 2 Special Theory of Relativity

Course Learning Objective

L	
LO 1	Understand the need for Special Relativity and the limitations of classical
	mechanics at high velocities
LO 2	Explain and apply Einstein's postulates, leading to key concepts such as time
	dilation, length contraction, and simultaneity
LO 3	Use Lorentz transformations to analyze events and solve problems in different
	inertial frames.
LO 4	Derive and interpret relativistic energy and momentum relations, including
	mass-energy equivalence (E=mc ²)

Course Code		Paper IV	Credits	Lectures
VSPH353		Special Theory of Relativity	2	30
Course Outcomes : Upon Completion of the course the student will be able to				
CO 1	Explain the fundamental principles of Special Relativity and implications.			
CO 2	Solve numerical problems involving relativistic kinematics and transformations.			
CO 3	Anal	yse energy and momentum relations in relativistic s	ystems.	
CO 4	Inter	pret spacetime geometry using Minkowski diagram	S.	
CO 5	Appl	y relativistic concepts to practical situations in phys	ics and tec	hnology.
Unit	Content			No. of Lectures
Unit 1	1.1 G 1.2 M Chap 2.1 P 2.2 L Chap 3.1 L 3.2 S 3.3 V	oter 1: Limitations of Classical Mechanics alilean Transformation and its limitations lichelson-Morley Experiment: Evidence for Special Relar oter 2: Foundations of Special Relativity ostulates of Special Relativity orentz Transformations: Derivation and Consequences oter 3: Consequences of Lorentz transformation ength Contraction and Time Dilation imultaneity and the Relativity of Time elocity Addition Theorem and Its Applications oter 4: Geometrical representation of Space-Time	tivity	10
	4.1 Iı	ntroduction to Four-Dimensional Spacetime		

	4.2 Calibration of Spacetime axes	
	4.3 Minkowski Spacetime diagrams for time dilation and length contraction	
	Chapter 5: Relativistic Kinematics and Dynamics	
	5.1 Lorentz Transformation of Velocities	
	5.2 Relativistic Energy and Momentum	
Unit 2	5.3 Equivalence of Mass-Energy and its application	10
Unit 2	5.4 Relativistic Form of Newton's Second Law	10
	5.5 Lorentz Transformation of force in Relativity	
	5.6 Collisions in Special Relativity	
	5.7 Stellar Aberration and Relativistic Doppler Effect	
	Chapter 6: Relativistic Electrodynamics	
	6.1 Transformation of Electric and Magnetic Fields	
	6.2 Relativistic Dynamics of Charged Particles in Electromagnetic Fields	
	6.3 Relativity and Maxwell's Equations	
Unit 3	6.3 Relativity and Maxwell's Equations Chapter 7: Introduction to General Relativity	10
Unit 3		10
Unit 3	Chapter 7: Introduction to General Relativity	10
Unit 3	Chapter 7: Introduction to General Relativity 7.1 Principle of Equivalence	10
Unit 3	 Chapter 7: Introduction to General Relativity 7.1 Principle of Equivalence 7.2 Gravitational Red Shift 	10

- 1. Introduction to Special relativity: Robert Resnick (Wiley Student Edition)
- 2. Concepts of Modern Physics: Arthur Beiser
- 3. Introduction to Electrodynamics: David J. Griffiths
- 4. Spacetime Physics: Edwin F. Taylor and John Archibald Wheeler
- 5. Special Relativity: A. P. French (MIT Introductory Physics Series)

Additional References:

- 1. Special Relativity: N. M. J. Woodhouse (Springer Undergraduate Mathematics Series)
- 2. Special Relativity and Classical Field Theory: Art Friedman and Leonard Susskind (Penguin publications)
- 3. Mechanics: K. R. Symon (Pearson)
- 4. Einstein's Theory of Relativity: Max Born (Dover Books on Physics)

Practical Course Code: VSPH354 Credits: 2

Major Physics Practical

Cou	irse Code	Major Physics Practical	Credits	Lectures		
	SPH354	Major Physics Practical	2	60		
	Lists of Experiment of GROUP A					
1.	To determine the surface tension of mercury using Quincke's method					
2.	To determine the thermal conductivity of a material using Lee's disc method					
3.	To determine Young's modulus using Koenig's method					
4.	To determi	ne the wavelength of monochromatic light using Fresne	l's bi-prisn	n		
5.	To determi	ne the wavelength of light using Lloyd's single mirror				
6.	To study th	e phenomenon of double refraction				
7.	To calculat	e interplanar spacing of glycodium powder using a LASE	ER			
8.	To study th	ne dielectric constant of a given material				
9.	To study th	ne characteristics of a diode as a temperature sensor				
10.	To study th	ne carrier lifetime using the pulsed reverse recovery met	hod			
11.	To design a	and test LM317 as a variable voltage source				
12.	To design a	nd test LM317 as a constant current source				
		Lists of Experiment of GROUP B				
1.	To design a	and study a transistorized astable multivibrator using a	breadboar	d		
2.	To design a	and study a transistorized monostable multivibrator using	ng a bread	board		
3.	To design a	and study a transistorized bistable multivibrator using a	breadboar	rd		
4.	To design a	and study an astable multivibrator using IC 555				
5.	To design a	and study a ramp generator using IC 555				
6.	To study th breadboar	ne application of IC 555 as a voltage-to-frequency conven d	rter using a	1		
7.	To study th	ne characteristics of a JFET as a switch (series and shunt	configurat	tions)		
8.	To study th	ne characteristics of a JFET as a common-source amplifie	er			
9.	To study th	ne characteristics of a UJT and design a relaxation oscilla	tor			
10.	To study Pulse Width Modulation (PWM) or Pulse Position Modulation (PPM) using a breadboard					
11.	To design a	and study a second-order active high-pass filter using a l	oreadboard	d		
12.	To design a	and study a second-order active low-pass filter using a b	readboard			

Note: Minimum **7 from each group** and **total 14 experiments** should be completed in the first semester. All experiments are to be reported in a journal. Certified journal is must to be eligible to appear for the semester end practical.

Elective I Course Code: VSPH355 Credits: 2

8051 Microcontroller

Course Learning Objective

LO 1	Identify the key components and internal architecture of the 8051 microcontroller,
	including I/O ports and memory structure.
LO 2	Write and trace 8051 assembly language programs using different addressing modes
	and control flow instructions.
LO 3	Implement 8051 programs for hardware tasks such as timing delays, serial
	communication, and interrupt handling.
LO 4	Interface peripherals like LEDs, switches, and sensors to 8051 and develop real-time
	applications using embedded programming techniques.

Course Code		Elective I	Credits	Lectures	
VSPH355		8051 Microcontroller	2	30	
Course Ou	Course Outcomes : Upon Completion of the course the student will be able to				
CO 1		Describe the evolution, architecture, and memory organization of microcontrollers.			
CO 2		op simple programs using 8051 instruction sets, addres tions in assembly language.	sing modes,	and stack	
CO 3		e and debug programs using timers, counters, serial rupts in the 8051 microcontroller.	communic	ation, and	
CO 4	_	n embedded applications by interfacing external de ocontroller.	vices with	the 8051	
Unit	Content			No. of Lectures	
	Chap	ter 1: Introduction to 8051 Microcontrollers			
	1.1 Ir	ntroduction to Microcontrollers & Microprocessors,			
Unit 1		istory & Classification (8-bit, 16-bit, CISC, RISC, Harvard nann)	l & Von	10	
	1.3 B	lock Diagram & Architecture of 8051		10	
	1.4 R	egisters & Memory Organization			
	1.5 8051 Pin Description, I/O Ports & Connections. Ref : AVD: Ch -1, 2, 3				
	Chap	ter 2: 8051 Instruction Set and Programming			
Unit 2	2.1 8	051 Addressing Modes		10	
	2.2 Ir	nstruction Set Overview		_ •	
	2.3 D	ata Transfer, Arithmetic, and Logical Instructions			

	 2.4 Branching and Stack Pointer Usage 2.5 Simple Assembly Language Programs. Ref : AVD: Ch-4 	
	Chapter 3: Timers, Serial Communication, and Interrupts	
	3.1 Programming 8051 Timers,	
	3.2 Counter Programming	
Unit 3	3.3 Basics of Serial Communication,	10
onit 5	3.4 8051 Connection to RS232	10
	3.5 8051 Serial Port Programming in assembly,	
	3.6 8051 Interrupts, Programming Timer Interrupts, Programming External Hardware Interrupts	
	Ref: AVD: Ch -	

- 1. **AVD** : Microcontrollers Theory and Applications by Ajay Deshmukh, The Tata McGraw Hill Companies.
- 2. Microcontroller 8051 by D. Karuna Sagar, Narosa Publishing House pvt. ltd.
- MMM : The 8051 Microcontroller & Embedded Systems by M. A. Mazdi, J. G. Mazdi and R. D. MccKinlay, 2nd Edition, Pearson.
- 4. **A** : The 8051 Microcontroller and Embedded Systems using Assembly and C by Kenneth J. Ayala, Cengage Learning.

Elective I Course Code: VSPH356 Credits: 2

8051 Microcontroller Practical

	irse Code SPH356	8051 Microcontroller Practical's	Credits 2	Lectures 60		
1.	Write an A	LP to perform two 8-bit addition.				
2.	Write an ALP to perform two 8-bit subtraction.					
3.	Write an A	LP to multiply two 8-bit numbers.				
4.	Write an A	LP to divide two 8-bit numbers.				
5.	Write an A	LP to transfer a block of data bytes from one memory loo	cation to a	nother.		
6.	Write an A	LP to compute the cube of numbers.				
7.	Write an A	LP to perform a 32-bit data rotation.				
8.	Write an A	Write an ALP to find the greatest/smallest number from a block of data.				
9.	Write an A	Write an ALP for a decimal/hexadecimal counter.				
10.	Write an A	Write an ALP to display a bit pattern on LEDs.				
11.	Generate a	Square Wave of 2 kHz using Timer 0 in Mode 1.				
12.	Generate a	Square Wave of 50 Hz using Timer 1 in Mode 1.				
13.	Generate a	Generate a Square Wave of 5 kHz using Timer 0 in Mode 2.				
14.	Implement Serial Communication using 8051.					
15.	Write an A	LP to trigger interrupt INT1 on Port 1.				

Note: A **minimum of 12 experiments** must be completed from the elective paper in Semester VI. All experiments should be recorded **neatly in a certified journal**. Submission of the certified journal is **compulsory to be eligible** for the semester-end practical examination.

Elective II Course Code: VSPH357 Credits: 2 Arduino Programming Practical

Course Learning Objective

-			
LO 1	Identify and describe the architecture, pin configuration, and development		
	environment of Arduino boards and use Tinkercad for circuit simulation.		
LO 2	Interface basic sensors (LDR, temperature, ultrasonic) and actuators (motors,		
	relays) with Arduino and display data using LCDs or 7-segment displays.		
LO 3	Apply the concepts of timers, interrupts, and real-time clock modules to create time-		
	based automation and real-time applications using Arduino.		
LO 4	Design and simulate embedded projects using Arduino and Tinkercad, applying IoT		
	principles and wireless communication modules like ESP8266.		

Course Code		Elective II	Credits	Lectures		
VSPH357		Arduino Programming	2	30		
Course Outcomes : Upon Completion of the course the student will be able to						
CO 1		Describe the architecture, pin configuration, and working principles of the Arduino platform.				
CO 2	Devel displa	op and execute Arduino programs to interface with s ays	ensors, act	uators, and		
CO 3	Imple modu	ement real-time applications using timers, interrupts iles.	s, and com	munication		
CO 4	U	n and develop embedded systems projects using An ation.	rduino and	Tinkercad		
Unit	Conte	ent		No. of Lectures		
Unit 1	 Harding and using Arduino IDE, Writing, compiling, and uploading 3.2 Basics of C/C++ programming 		10			
	3.3 S	erial communication (Serial Monitor & Serial Plotter).				

	Chapter 4: Basic Input/Output (I/O) Operations in Arduino & Tinkercad	
	4.1 Digital input and output (using LEDs and push buttons)	
	4.2 Analog input and output (using potentiometers and PWM)4.3 Simulating basic circuits in Tinkercad.	
	Chapter 5: Sensors, Actuators, and Communication	
	5.1 Interfacing Sensors with Arduino : Light-dependent resistor (LDR) for light sensing, Temperature sensor (DHT11, LM35), Ultrasonic sensor (HC-SR04) for distance measurement, IR sensor for object detection.	
Unit 2	 5.2 Controlling Actuators : Interfacing with DC motors and servo motors, Motor driver circuits (L293D, L298N), Relay control for automation. 5.3 Display Modules and Communication: LCD (16x2) and OLED displays, 7-segment displays for numeric output, Bluetooth communication (HC-05), Basics of IoT: Sending data to cloud platforms, Simulating these interfaces in Tinkercad. 	10
	Chapter 6: Advanced Applications	
Unit 3	6.1 Timers, Interrupts, and Real-Time Applications: Understanding Arduino timers, Internal and external interrupts, Real-time clock module (RTC) for time-based automation, Simulating timers and interrupts in Tinkercad.	10
	 6.2 Wireless Communication and IoT Applications: Introduction to WiFi module (ESP8266, ESP32), IoT-based data logging using Arduino, Virtual IoT experiments using Tinkercad. 6.3 Mini Project Development : Home automation using Arduino and relays, Smart irrigation system using soil moisture sensors, Weather monitoring system using sensors, Line-following robot using IR sensors 	10

- 1. Arduino-Based Embedded Systems : By Rajesh Singh, Anita Gehlot, Bhupendra Singh, and Sushabhan Choudhury.
- 2. https://www.arduino.cc/en/Tutorial/HomePage
- 3. Arduino Made Simple by Ashwin Pajankar
- 4. 4. Embedded C, Pont, Michael J

Elective II Course Code: VSPH358

Credits: 2 Arduino Programming Practical

	irse Code SPH358	Arduino Programming Practical	Credits 2	Lectures 60		
1.	LED Blinki	ng using Arduino and Tinkercad				
2.	Controlling	g an LED with a Push Button				
3.	PWM-base	d LED Brightness Control using a Potentiometer				
4.	Light Inten	sity Measurement using LDR Sensor				
5.	Temperatu	re Measurement using DHT11 / LM35 Sensor				
6.	Distance M	leasurement using Ultrasonic Sensor (HC-SR04)				
7.	Object Det	ection using IR Sensor				
8.	Motion De	Motion Detection using PIR Sensor				
9.	DC Motor S	DC Motor Speed Control using L293D Motor Driver				
10.	Servo Moto	Servo Motor Angle Control using PWM				
11.	Relay Mod	Relay Module Control for Home Automation				
12.	Displaying	Displaying Sensor Readings on a 16x2 LCD Display				
13.	Real-Time	Clock (RTC) Module Interfacing				
14.	Precise De	lay Generation using Arduino Timers				

Note: A **minimum of 12 experiments** must be completed from the elective paper in Semester VI. All experiments should be recorded **neatly in a certified journal**. Submission of the certified journal is **compulsory to be eligible** for the semester-end practical examination.

Vocational Skill Course

Course Code: VSPH359

Credits: 2

Data Analysis and Visualization Using Python

Course Learning Objective

LO 1	Integrate MySQL with Python to manage databases and perform CRUD operations relevant to physics data.
LO 2	Generate 2D and 3D plots using Matplotlib to visualize scientific data including error bars, subplots, and CSV-based input.
LO 3	Use NumPy for efficient numerical array operations, mathematical computation, and linear algebra applications.
LO 4	Use SciPy for analyzing experimental data through curve fitting and solving simple differential equations.

Course Co	ode	VSC	Credits	Lectures
VSPH359		Data Analysis and Visualization Using Python	2	60
Course Outo	comes :	Upon Completion of the course the student will be able	e to	
CO 1	Apply physi	<pre>/ MySQL with Python for database management and CU cs.</pre>	IRD operat	ions in
CO 2	Analy	vse scientific data using Matplotlib for effective visualiz	ation.	
CO 3	Imple	ement NumPy for numerical computations and matrix o	perations.	
CO 4	Evalu	ate experimental data using SciPy for curve fitting and	analysis.	
Unit	Cont	ent		No. of Lectures
Unit 1	1.1 In A 1.2 N au 1.3 A Sj 1.4 M ft 1.5 L E 1.6 C	 Chapter 1- Numerical Computing with NumPy and SciPy 1.1 Introduction to NumPy – Overview, Installing NumPy, Advantages over lists 1.2 NumPy Arrays – Creating 1D, 2D, and 3D arrays, Array attributes and properties 1.3 Array Operations – Indexing, Slicing, Reshaping, Stacking, Splitting 1.4 Mathematical Functions – Basic arithmetic, Trigonometric functions, Exponential and logarithmic functions 1.5 Linear Algebra with NumPy – Matrix operations, Determinants, Eigenvalues and Eigenvectors 1.6 Curve Fitting with SciPy – Introduction to SciPy, fitting experimental data to curves, solve simple differential equation 		10
Unit 2	Chapter 2 - Data Visualization with Matplotlib 2.1 Introduction to Matplotlib – Overview, Installing Matplotlib,		10	

	Basic Plot Structure		
	2.2 Basic 2D Plots – Line plots, Scatter plots, Bar charts, Histograms, Pie charts		
	2.3 Advanced 2D Plots – Semilog and Log-log plots, Error bars, Annotating graphs		
	2.4 Multiple Plots – Subplots, Multiple plots in one figure, Customizing axes and legends		
	2.5 3D Visualization – Surface plots, Contour plots		
	2.6 Plotting Data from Files – Reading and visualizing CSV and text file data		
	2.7 Customization and Styling – Colors, Markers, Line styles, Labels, Titles, Grids		
	AG : Ch- 9		
	Chapter 3 : MySQL with Python for Physics Applications		
	3.1 Introduction to MySQL and Python Integration – Overview of MySQL, setting up MySQL Connector in Python, Understanding Database Management, Cursor object		
	3.2 Database and Table Management – Creating databases, Defining tables with data types and constraints		
	3.3 CRUD Operations (Create, Retrieve, Update, Delete) – Inserting, Updating, deleting records in MySQL using Python		
Unit 3	3.4 Retrieving Data – SELECT queries, Filtering data with WHERE, LIKE, BETWEEN	10	
	3.5 Sorting and Grouping Data – ORDER BY, GROUP BY, HAVING		
	3.6 Aggregation Functions – COUNT(), SUM(), AVG(), MIN(), MAX()		
	3.7 Fetching Query Results in Python – Using execute(), executemany(), fetchone(), fetchall()		
	3.8 Applications in Physics – Storing and analyzing experimental data, Managing large datasets for computational physics		

Data Analysis and Visualization Using Dython		Lectures 30		
1.	1. Create a MySQL database and define tables with appropriate data types and constraints.			
2.	2. Perform Create, Read, Update, and Delete (CRUD) operations on an experimental dataset using Python.			
3.	Execute SELECT queries with WHERE, LIKE, and BETWEEN to filter data.			
4.	4. Apply aggregation functions (COUNT(), SUM(), AVG(), MIN(), MAX()) to analyze experimental data.			
5.	5. Use ORDER BY, GROUP BY, and HAVING to organize and analyze physics data; visualize MySQL query results using Matplotlib.			;

	η
6.	Plot a line graph for simple harmonic motion (sine wave) with labeled axes and a grid.
7.	Create a scatter plot for temperature variations over 24 hours with customized markers.
8.	Plot histograms and statistical analysis (mean, median, standard deviation) of random experimental errors with a normal distribution curve.
9.	Create semilog and log-log plots for radioactive decay to determine half-life.
10.	Use subplots to visualize displacement-time, velocity-time, and acceleration-time graphs for free fall.
11.	Create a 3D surface plot and contour plot to visualize gravitational potential around a planet.
12.	Read data from a CSV file and plot an appropriate graph to analyse trends.
13.	Generate Lissajous figures for different frequency ratios and phase differences.
14.	Generate 1D, 2D, and 3D arrays, perform reshaping, slicing, and indexing operations.
15.	Perform element-wise operations – Add, subtract, multiply, and divide arrays; apply mathematical functions (sin, cos, log, exp) to arrays.
16.	Compute transpose, determinant, inverse, and eigenvalues/eigenvectors of matrices using NumPy.
17.	Use numpy.linalg.solve() to find the solution of Ax = B for a given coefficient matrix A and vector B.
18.	Fit experimental data to a polynomial or exponential curve and find best-fit parameters.
19.	Calculate and plot the trajectory of a projectile under gravity.
20.	Use NumPy's random module to generate uniform, normal, and Poisson-distributed numbers and analyse their properties.
21.	Perform Fourier Transform and Inverse Fourier Transform (IFFT) on single and multiple frequency signals; analyse their frequency spectra using FFT.
22.	Solve differential equations (e.g., damped harmonic motion, RC circuits) using SciPy.

Note: A **minimum of 16 experiments** must be completed from the VSC paper in Semester VI. All experiments should be recorded **neatly in a certified journal**. Submission of the certified journal is **compulsory to be eligible** for the semester-end practical examination.

- 1. **RT :** Python Programming: Using Problem solving approach by Reema Thareja, Oxford University press (2nd Edition)
- 2. **AG** : Scientific Computing in Python by Abhijit Kar Gupta 2nd edition, Tehno World Publication
- 3. Think Python: How to Think Like a Computer Scientist by Allen B. Downey, 2nd Edition, Shroff/O'Reilly Publication
- 4. NumPy Array Documentation <u>https://numpy.org/doc/stable/reference/generated/numpy.array.html</u>
- 5. NumPy Matrix Documentation https://numpy.org/doc/stable/reference/generated/numpy.matrix.html

- 6. Scipy Documentation <u>https://docs.scipy.org/doc/scipy/reference/index.html</u>
- 7. Matplotlib Documentation <u>https://matplotlib.org/stable/tutorials/pyplot.html</u>

Minor Theory Course Code: VSPH360 Credits: 2

Semiconductor Devices - 2

Course Learning Objective

LO 1	Understand the types and principles of feedback in amplifier circuits.	
LO 2	Analyze the working of various transistor oscillators using the Barkhausen criterion.	
LO 3	Describe the characteristics and applications of SCR, Diac, and Triac in AC control systems.	
LO 4	Solve numerical problems related to amplifier gain, oscillator frequency, and power control using feedback and semiconductor devices.	

Course Code		Minor	Credits	Lectures
VSPH360		Semiconductor Devices - 2	2	30
Course Outco	mes	Upon Completion of the course the student will be a	ble to	
CO 1	Explain the concept of negative feedback in amplifiers and evaluate its effects on voltage and current gain.			ts effects
CO 2		Illustrate the working principles and types of sinusoidal oscillators and analyze oscillator circuits		
CO 3		rpret the working and characteristics of Silicon Contr , and Triac for power control applications.	olled Rectif	fier (SCR),
CO 4	CO 4 Apply the knowledge of feedback, oscillators, and thyristor family devices to solve basic electronics problems and design circuits.			evices to
Unit	Unit Content			No. of Lectures
Unit 1	Unit 1Chapter 1: Amplifiers With Negative Feedback1.1 Feedback and its types1.2 Principles of Negative Voltage Feedback in Amplifier, Gain of Negative Voltage Feedback Amplifier, Advantages of Negative Voltage Feedback1.3 Principles of Negative Current Feedback, Current Gain with Negative Current Feedback, Effect of Negative Current Feedback, 1.4 Emitter Follower, Application of Emitter Follower, Problems Based on Negative FeedbackRef: VM - 13.1, 13.2, 13.3, 13.4, 13.6, 13.7, 13.8, 13.9		10	
Unit 2	Chapter 2: Sinusoidal Oscillators2.1 Sinusoidal Oscillator and its Types2.2 Oscillatory Circuit2.3 Undamped Oscillations from Tank Circuits		10	

	2.4 Positive Feedback Amplifier			
	2.5 Essentials of Transistor Oscillator			
	2.6 Explanation of Barkhausen Criterion			
	2.7 Different Types of Transistor Oscillators			
	Colpitts Oscillator, Hartley Oscillator, Phase Shift Oscillator, Wien Bridge Oscillator, Problems on Oscillator Circuit			
	Ref : VM - 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.10, 14.11, 14.13, 14.14			
	Chapter 3: Silicon Control Rectifier			
	4.1 Silicon Control Rectifier, Working of Silicon Control Rectifier, Equivalent Circuit of Silicon Control Rectifier, V-I characteristics of Silicon Control Rectifier			
Unit 3	4.2 Silicon Control Rectifier as Half Wave Rectifier, Silicon Control Rectifier as Full Wave Rectifier	10		
	3.2 Construction and Working of Triac, V-I Characteristic of Triac			
	3.3 Construction and Working of Diac, V-I Characteristic of Diac			
	Ref : VM - 20.1, 20.2, 20.3, 20.5 , 20.9 , 20.10, 21.2.21.3,21.5,21.6, 21.9			

- 5. VM: Principles of Electronics V. K. Mehta and Rohit Mehta. (S. Chand –Multicolor revised edition)
- 6. MB: Electronic Principles, Malvino& Bates -7th Edition TMH Publication.
- 7. AM: Electronic Devices and Circuits, Allen Mottershead -PHI Publication.
- 8. KVR: Functional Electronics, K.V. Ramanan-TMH Publication

OJT Course Code: VSPH361 Credits: 4 On - Job Training

General instructions:

- On-the-job training (OJT) will carry a weightage of Four Credits.
- Each student is required to complete one hundred and twenty clock hours of On-the-Job Training (OJT).
- The OJT program is to be completed during Semester VI.
- Semester Integrated Internship is an integral part of the academic curricula. Satisfactory completion of an internship is a mandatory requirement for the degree to be awarded by the University.
- Furthermore, considering the curriculum structure approved by the Academic Council of the college and respective department's Board of Studies. Multiple modes of internships are possible and are assigned academic credits within the curricula. The general idea is to enable students to undertake immersive assignments within the organisations for a limited period.
- It must be noted that **1 credit is equivalent to minimum 30 hours of work**. An intern is expected to spend 30 hours per week on Internship and related activities. Furthermore, Internships must be done offline.
- During the internship registration, the **students are to notify their preference on whether they are seeking academic or industrial internships**

Objectives of the OJT Programme:

An OJT programme in general sets out to achieve objectives such as:

- 1. Align classroom learnings with workplace outcomes.
- 2. Provide students with real-world work experience and align their expectations with job demands.
- 3. To enhance employability skills such as critical thinking, problem-solving, communication, and teamwork.
- 4. Combine physical and digital learning modes in industry settings, blended with mentorship.
- 5. Foster research skills, including knowledge discovery, analytical tools, methodologies, and ethical conduct.

- 6. To prepare students for future job roles by exposing them to the latest tools, techniques, and technologies.
- 7. Strengthen students' entrepreneurial skills and encourage job creation.
- 8. Facilitate problem-solving, decision-making, teamwork, and collaboration.
- 9. Foster social awareness and philanthropic values among students.
- 10. Encourage collaboration between Higher Education Institutes (HEIs), industry, and academia for internships and research opportunities.
- 11.Instil professional principles, ethics, values, and integrity to meet employment market demands and social needs.

Course Outcomes

After the completion of the OJT programme, the student will be able to;

- 1. Apply concepts learned in classrooms to real-world work environments, enhancing their understanding and skills.
- 2. Demonstrate insights into the challenges, opportunities, and culture of different workplaces, preparing them for future employment.
- 3. Effectively navigate through various learning modalities effectively through exposure to hybrid learning models.
- 4. Show evidence of research aptitude and skills of critical thinking, analytical skills, and ethical research conduct in the conduct, and communication of their work.
- 5. Use and appreciate the use of emerging technologies and their applications, enhancing their technological literacy and adaptability.
- 6. Display problem-solving abilities in making informed decisions in complex scenarios through practical situations.
- 7. Work in teams and collaborate to achieve common goals in diverse work environments through collaborative projects.
- 8. Give examples and cite ways of contributing to the field of work in a manner that displays social responsibility and sustainability.
- 9. Display integrity in their dealings with their work and the people that they interact with by upholding professional; principles and ethical standards.

Duration and Scheduling

Duration: A minimum of 8–12 weeks, aligning with NEP 2020 recommendations for practical and skill-based learning.

Flexibility: OJT will be integrated into the academic calendar as part of the curriculum.

Blended Mode: Incorporate both in-person and online training opportunities.

Training Modules

- **1.** Skill Development: Industry-relevant technical and soft skills training.
- **2.** Project-Based Learning: Students will work on live projects, contributing to organizational goals.
- **3.** Mentorship: Mentors or supervisors from the organization will guide students.
- **4.** Periodic Evaluation: Regular performance assessments and feedback mechanisms.

The process of evaluation of On-Job Training Program is structured as below.

The student will prepare a plan for proposed On-Job Training Program. The plan may contain following aspects:

Sr. No.	Particulars	
1	Name of the organization where the On-Job Training is proposed to be carried out.	
2	Details of the organization.	
3	The area in which he/she is planning to undergo On-Job Training.	
4	Details of the various subject specific concepts learnt by the student before joining the On-Job Training.	
5	Allocation of 120 hours of On-Job Training Program.	
6	List of the skills that he/she is planning to acquire during On-Job Training.	
7	A brief note on how the On-Job Training program may benefit him/her to develop better skills in his/her subject.	
8	Details of the primary discussion that the student had with any officer / authority of the On-Job Training Program providing organization about proposed work.	
9	Proposed outcomes of the On-Job Training Program.	

Evaluation Scheme

Particulars	Marks
Duration of Training	30
Practical skills	20
Professional Conduct	10
Report based on Training	20
Knowledge assessments through oral presentation	20
TOTAL	100

Theory / Practical Examination Pattern for Semester V / VI

(Major / Minor and VSC / SEC)

Internal Assessment – Theory Paper (Total: 40 Marks)

Sr. No.	Component	Nature of Assessment	Marks	
1.	CIA-1	Written test conducted in class	15	
	Class Test (Short Answers/ MCQs/ Objective Questions)			
2.	CIA-2	Individual or group work		
	Assignment / Project / Presentation / Book Review /	submitted as report or	15	
	Research Review	presented orally		
3.	CIA-3	Based on engagement,	10	
	Participation, Performance & Attendance	attentiveness, regularity	10	
Total			40	

> External Assessment – Semester End Theory Paper (Total: 60 Marks)

Paper Name		
Duration : 2 HoursMarks : 6		
Q. 1 A)	Attempt any ONE.	7 Marks
i.	Questions Based on Unit 1	
ii.	Questions Based on Unit 1	
B)	Attempt any TWO.	
i.	Questions Based on Unit 1	8 Marks
ii.	Questions Based on Unit 1	
iii.	Questions Based on Unit 1	
Q. 2 A)	Attempt any ONE.	7 Marks
i.	Questions Based on Unit 2	
ii.	Questions Based on Unit 2	
B)	Attempt any TWO.	
i.	Questions Based on Unit 2	8 Marks
ii.	Questions Based on Unit 2	
iii.	Questions Based on Unit 2	
Q. 3 A)	Attempt any ONE.	7 Marks
i.	Questions Based on Unit 3	
ii.	Questions Based on Unit 3	
B)	Attempt any TWO.	8 Marks
i.	Questions Based on Unit 3	
ii.	Questions Based on Unit 3	
iii.	Questions Based on Unit 3	
Q. 4	Solve the following.	15 Marks
i.	Questions Based on Unit 1	
ii.	Questions Based on Unit 2	
iii.	Questions Based on Unit 3	

> External Assessment – Semester End Practical Examination (Total: 100 Marks)

- > Every student must maintain and complete a practical journal as per the prescribed syllabus.
- The journal must be duly checked and certified by the subject teacher and Head of the Department (HOD).
- Students without a completed and certified journal will not be permitted to appear for the practical examination.

MAJOR / MINOR			
Component	Marks		
Experiment from group - A	40		
Experiment from group - B	40		
Viva Voce	10		
Journal Evaluation	10		
Total Marks	100		

VSC / SEC			
Component	Marks		
Experiment - I	40		
Experiment - II	40		
Viva Voce	10		
Journal Evaluation	10		
Total Marks	100		